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Cerebrospinal fluid phospho-tau T217
outperforms T181 as a biomarker for the
differential diagnosis of Alzheimer’s disease
and PET amyloid-positive patient
identification
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Abstract

Background: Cerebrospinal fluid biomarker profiles characterized by decreased amyloid-beta peptide levels and
increased total and phosphorylated tau levels at threonine 181 (pT181) are currently used to discriminate between
Alzheimer’s disease and other neurodegenerative diseases. However, these changes are not entirely specific to
Alzheimer’s disease, and it is noteworthy that other phosphorylated isoforms of tau, possibly more specific for the
disease process, have been described in the brain parenchyma of patients. The precise detection of these isoforms
in biological fluids remains however a challenge.

Methods: In the present study, we used the latest quantitative mass spectrometry approach, which achieves a
sensitive detection in cerebrospinal fluid biomarker of two phosphorylated tau isoforms, pT181 and pT217, and first
analyzed a cohort of probable Alzheimer’s disease patients and patients with other neurological disorders, including
tauopathies, and a set of cognitively normal controls. We then checked the validity of our results on a second
cohort comprising cognitively normal individuals and patients with mild cognitive impairments and AD stratified in
terms of their amyloid status based on PiB-PET imaging methods.
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Results: In the first cohort, pT217 but not pT181 differentiated between Alzheimer’s disease patients and those
with other neurodegenerative diseases and control subjects much more specificity and sensitivity than pT181. T217
phosphorylation was increased by 6.0-fold in patients with Alzheimer’s disease whereas T181 phosphorylation was
only increased by 1.3-fold, when compared with control subjects. These results were confirmed in the case of a
second cohort, in which the pT217 cerebrospinal fluid levels marked out amyloid-positive patients with a sensitivity
and a specificity of more than 90% (AUC 0.961; CI 0.874 to 0.995). The pT217 concentrations were also highly
correlated with the PiB-PET values (correlation coefficient 0.72; P < 0.001).

Conclusions: Increased cerebrospinal fluid pT217 levels, more than those of pT181, are highly specific biomarkers
for detecting both the preclinical and advanced forms of Alzheimer’s disease. This finding should greatly improve
the diagnosis of Alzheimer’s disease, along with the correlations found to exist between pT217 levels and PiB-PET
data. It also suggests that pT217 is a promising potential target for therapeutic applications and that a link exists
between amyloid and tau pathology.
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Background
There still exists no widely recognized cure for Alzhei-
mer’s disease (AD), the leading cause of dementia world-
wide [1, 2]. The diagnosis of AD and the development of
suitable drug treatment are highly challenging issues,
and there is still a crucial need for biomarkers which can
be used to detect its early forms and distinguish it from
other neurodegenerative disorders. Recent developments
in cerebrospinal fluid (CSF) biochemistry [3] and brain
positron emission tomography (PET) imaging [1] bio-
marker have yielded valuable tools in relation with
amyloid-β plaques and neurofibrillary tangles (NFT), re-
spectively. The main CSF biomarker profiles currently
used for identifying AD are decreased amyloid-beta 42
(Aβ42) levels, evaluated either alone or with respect to
Aβ40 [4], and increased total and phosphorylated tau
levels at threonine 181 (pT181) [3–6]. This approach, based
mainly on immunoassays, can be used to discriminate be-
tween AD and non-AD pathologies [7–9] [10] and to detect
the AD process many years prior to the onset of cognitive
symptoms and complaints [7, 11]. However, changes in the
total CSF and pT181 tau levels are not entirely specific to
AD. They are sometimes observed in other tauopathies,
such as progressive supranuclear palsy (PSP) [8] and fronto-
temporal lobar degeneration (FTLD) [9], as well as demen-
tia of other kinds, where they also reflect neurodegenerative
processes. Brain studies on AD have shown the presence of
many hyperphosphorylated tau sites [12–15] which might
promote tau aggregation and the formation of NFT [16,
17]. These phosphorylated sites might therefore constitute
alternative biomarkers of AD in addition to pT181. Finding
specific means of detecting the corresponding p-tau iso-
forms in biological fluids for diagnostic purposes is still a
challenging problem as the protein is subject to mul-
tiple post-translational modifications (acetylation, ubi-
quitination, methylation, truncation, etc.) at many sites
along its sequence in addition to phosphorylation [18, 19].

To our knowledge, only phosphorylations of threonine
231 (pT231) and serine S199 [10, 20] have been tested for
AD diagnosis in CSF using commercially available IVD
immunoassay kits [21]. Whether or not the performances
of methods using this biomarker are more efficient than
those based on pT181 has not yet been clearly established.
Mass spectrometry-based methods are more relevant

than immunoassays for assessing changes in the phos-
phorylation levels of specific sites independently of the
total protein levels, as these methods can be used to
directly quantify the phosphorylated peptides and their
corresponding unmodified counterparts [13–15, 22]. In
the present study, we used our latest mass spectrometry
(MS) approach, which gives sensitive detection of pT181
and pT217 tau not only in brain extracts, but also in the
CSF [23]. We first analyzed a cohort of probable AD pa-
tients and patients with other neurological disorders, in-
cluding tauopathies, and a set of cognitively normal
controls. We then checked the validity of our results on a
second cohort comprising cognitively normal individuals
and patients with mild cognitive impairments and AD
stratified in terms of their amyloid status based on Pitts-
burgh compound B (PiB)-PET imaging methods. The data
obtained show that CSF pT217 is a much more highly
specific marker than pT181 for detecting both preclinical
and advanced AD. We also established the existence of a
correlation between patients’ pT217 levels and the pres-
ence of amyloidosis at an early stage in the disease.

Methods
Subjects and samples
The first cohort used in this study focusing on AD and
its differential diagnosis originated from the Montpellier
Memory Research and Resources Center. All the pa-
tients consulting the center underwent a thorough clin-
ical examination, magnetic resonance brain imaging
(MRI), and standard neuropsychometric tests including
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the Mini-Mental State Examination (MMSE) [24]. La-
boratory tests were also performed in order to rule out
the presence of dementia linked to thyroid dysregulation,
metabolic syndrome, and viral diseases. The cohort in-
cluded 10 patients with probable AD with high levels of
evidence based on the NIA diagnostic criteria [25]. To
avoid circular reasoning in this study focusing on tau,
we used MRI and CSF amyloid findings rather than
ELISA tau and pT181 levels to determine the pattern of
the neural lesions present in AD patients. These AD pa-
tients were compared with 40 patients with non-AD dis-
eases as follows: 8 patients with frontotemporal lobar
degeneration (FTLD) with consensus criteria [26], 9 with
Lewy body disease (LBD) based on the McKeith criteria
[27], 6 with progressive supranuclear palsy (PSP), 1 with
corticobasal degeneration (CBD), 6 with adult chronic
idiopathic hydrocephalus (ACIH), 2 with mixed demen-
tia, 2 with vascular dementia with possible AD, 2 with
vascular dementia, 1 with brain metastasis, and 5 control
subjects without any cognitive complaints and with nor-
mal neuropsychological profiles. In this group, lumbar
punctures were performed in order to detect any acute
cephalalgia or focal neurological signs so as to rule out
the presence of central nervous system alterations. Par-
ticipants’ demographics, clinical presentation, MRI data,
and neuropsychological and biomarker profiles are pre-
sented in Table 1 and SupTable1. All the participants

gave their written informed consent to participate in this
study, which was approved by the Montpellier University
Hospital’s regional Ethics Committee (number 2011-
003926-028). CSF samples were collected in polypropyl-
ene tubes under standard conditions [28]. CSF Aβ42,
total tau, and pT181 levels were measured using the
standardized commercially available Innotest® sandwich
ELISA (Fujirebio). The quality/accuracy of the results
was ensured by using internal and external quality con-
trol (QC) procedures [29]. The QC coefficient of vari-
ation obtained on CSF total tau and pT181 in each
batch and between batches ranged consistently below
15%. CSF samples were stored at the Montpellier CSF-
Neurobank (#DC-2008-417 of the certified NFS 96-900
CHU resource center BB-0033-00031, www.biobanques.
eu). Authorization to handle personal data was granted
by the French Data Protection Authority (CNIL) under
the number 1709743 v0.
The second cohort included amyloid-positive and pro-

dromal AD participants, cognitively normal individuals,
and patients with mild cognitive impairments recruited
from the Alzheimer’s Disease Research Center (ADRC)
at the Washington University in Saint Louis (WUSTL)
as previously published by Patterson et al. [30]. In this
ethically approved cohort, deposition of amyloid plaques
was quantified in terms of the mean cortical binding
potential (MCBP) the [11C]PiB-PET score (amyloid

Table 1 Demographical and cerebrospinal fluid (CSF) biomarker values in the Montpellier (AD and NAD) and the WUSTL (amyloid
(−) and (+)) cohorts. Results are expressed as means ± standard deviations (SDs). Abbreviations: MMSE Mini-Mental State Examination,
AD Alzheimer’s disease, NAD non-Alzheimer’s disease; P significance level of the Student’s t test

Montpellier cohort NAD n = 40 AD n = 10

Variable Mean SD Mean SD P

Age (years) 69.3 12.1 75.7 10.1 0.1330

Sex (% male) 67.5% – 20.0% – 0.0070*

MMSE 21.2 6.2 18.5 4.4 0.2112

E_Tau (pg/mL) 260 182 715 304 < 0.0001

E_pT181 (pg/mL) 42.9 24.6 95.8 25.0 < 0.0001

MS_pT181 (fmol/mL) 23.8 13.2 60.2 27.7 < 0.0001

MS_pT217 (fmol/mL) 0.948 1.066 11.740 5.006 < 0.0001

WUSTL cohort Amyloid (−) n = 51 Amyloid (+) n = 33

Variable Mean SD Mean SD P

Age (years) 62.7 14.3 67.0 16.3 0.2063

Sex (% male) 39.2% – 57.6% – 0.1007*

CDR-SB 0.34 1.09 1.77 1.82 0.0004

%E4 17.7% – 66.7% – < 0.0001*

PiB-PET 0.046 0.047 0.670 0.293 < 0.0001

E_pT181 (pg/mL) 47.5 21.5 76.0 25.4 < 0.0001

MS_pT181 (ng/mL) 0.350 0.256 0.596 0.312 < 0.0001

MS_pT217 (ng/mL) 0.057 0.1121 0.202 0.126 < 0.0001

*Chi-squared test for the comparison of two proportions
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positive if the PiB-PET MCBP score > 0.1814). CSF was
collected and stored as described in the latter study.
Total tau and p-tau (181) CSF levels were measured
using the standardized commercially available Innotest®
sandwich ELISA (Fujirebio). This cohort included 33
amyloid-positive and 51 amyloid-negative participants,
based on the results of the PiB-PET: the patients’ demo-
graphics of participants are described in Table 1.

CSF tau purification and digestion
In the case of the Montpellier cohort, CSF samples
(450 μL) spiked with recombinant 15N-tau-441 (final
concentration 100 fmol/mL) were extracted as previ-
ously described [31]. After brief perchloric acid
precipitation, acidic supernatant was extracted by
performing solid phase extraction, dried, and then
digested with trypsin. For the phosphorylated peptide
quantification, the following synthetic heavy isotope-
labeled phosphorylated peptides (AQUA, labeled at
the C-terminal residue) TPPAPKpTPPSSGEPPK
(pT181) and TPSLPpTPPTREPK (pT217) (Thermo
Fisher Scientific, Ulm, Germany) were spiked in each
sample to obtain a concentration of 100 fmol/ml. In
the case of the WUSTL cohort, 800 μL of CSF super-
natant obtained after Aβ immunoprecipitation [30]
and stored at − 80 °C was used for tau analysis.
Thawed supernatants were spiked with 15N tau in-
ternal standard (5 ng per sample, notably to control
preanalytical variation) and extracted as previously de-
scribed [22] by performing Tau1 immunoprecipitation.
This immunoprecipitation ensured a more specific tau
enrichment than chemical purification, reducing LC-
MS/MS interference and ensuring a phosphopeptide
signal higher by a factor 2 to 3. This could however in-
duce a bias in p-tau detection as Tau1 antibody is sen-
sitive to phosphorylation in its epitope. Though Tau1
failed to recover pS199, pT217 and pT181 phosphory-
lated isoforms are recovered by this antibody in a
similar way to what is observed with some other tau
antibodies [23]. Briefly, 5 mM guanidine, 1% NP-40,
and protease inhibitor cocktail were added to the
sample. Samples were then mixed for 3 h at room
temperature with 20 μL of sepharose beads cross-
linked to Tau1 antibody. Beads were precipitated be-
fore being rinsed with 0.5 M guanidine and triethylam-
monium bicarbonate (TEABC) 25 mM. Samples were
digested with 400 ng of trypsin. In each sample, the
TPPAPKpTPPSSGEPPK (pT181) and TPSLPpTPPTR
(pT217) AQUA peptides were spiked along with their
unphosphorylated counterparts TPPSSGEPPK (T181)
and TPSLPTPPTR (T217) at 10 and 100 fmol per
sample, respectively. The resulting peptide samples
were loaded onto TopTip C18 tips, washed with 0.1%
formic acid (FA) solution, and eluted with 60%

acetonitrile (ACN) 0.1% FA solution. Samples were
dried in a Speedvac and stored at − 80 °C. Prior to LC-
MS analysis, samples were resuspended in 25 μL 2%
ACN 0.1% FA.

Mass spectrometry assays
In the case of the Montpellier cohort, MS analysis of
endogenous and spiked peptides was performed as de-
scribed elsewhere, using a LC-ESI-Quadrupole-Orbitrap
analytical system (Q-Exactive, Thermo Scientific, San
Jose, CA). Three microliters of each CSF digested sample
was injected. Peptide separation was achieved within 30
min on a C18 column with the mobile phases (A) 0.1%
formic acid in water and (B) 0.1% FA in ACN. Gradients
used were 0 min-2%, 3 min-4%, 15 min-15%, 15.6 min-
52%, 16 min-90%, 17.3 min-90%, 17.5 min-2%, and 30
min-2%. In the case of the WUSTL cohort, experiments
were performed as previously described [22] using a Fu-
sion Tribrid mass spectrometer (Thermo Scientific, San
Jose, CA). Five microliters of each sample was injected.
Peptide separation was achieved within 30min on a Wa-
ters HSS T3 column. Mobile phases were (A) 0.1% FA in
water and (B) 0.1% formic acid in ACN. Gradients used
were 0 min-0.5%, 3 min-6%, 17 min-15%, 19 min-52%,
20 min-90%, 22 min-90%, 23 min-2%, and 30min-2%.
Data were acquired with both methods in the positive
ion mode.

Phosphorylated and non-phosphorylated Tau peptide
quantification
Since no labeled p-tau proteins were available, AQUA
phosphorylated peptides were used: this approach is
generally considered to be the best source of reference
material for monitoring endogenous phospho-peptide
levels. In the Montpellier cohort, the absolute concentra-
tions of unphosphorylated peptide were computed with
respect to the corresponding 15N-labeled peptides, as
previously described [31]. The level of each endogenous
phosphorylated peptide was calculated using single point
calibration methods to compare the area obtained on
AQUA phosphorylated peptide counterparts. In the
WUSTL cohort, pT217 and pT181 levels were calculated
as follows: ptau/tau ratio for each site is calculated by
comparison with AQUA internal phosphorylated and
unphosphorylated peptide signals. The ptau level is then
calculated by multiplying ptau/tau ratio to the t-tau level
measured for the corresponding unmodified peptide using
the comparison to the 15N peptide signal from recombin-
ant tau internal standard. Tau phosphorylation on other
sites, like pS214 or pS184/S185, could bias the estimation
of the phosphorylation ratio at T217 or T181 respectively
by contributing to the level decrease of corresponding
unphosphorylated peptide. However, the phosphorylation
occupancy at these sites was respectively measured as 10
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to 100 times less than at positions T217 and T181 in the
brain and CSF [23] which therefore reduces this potential
contribution.
Measurement reproducibility was as assessed using

quality controls consisting of CSF pools extracted four
times independently and analyzed simultaneously within
the cohort (see Sup Table 4). The response linearity of the
PRM transitions used for phosphorylated peptide quantifi-
cation was confirmed by the reverse curves obtained on
phosphorylated AQUA peptides in pools of CSF extracts.

Statistical analysis
Statistical analyses were performed using the MedCalc
software program (19.0.5). With a non-normal distribu-
tion, the chi-squared test or Fisher’s exact test was per-
formed on the qualitative variables and the Kruskal-
Wallis test on the quantitative variables. To test the nor-
mal distribution, Student’s t test was used. Spearman
correlations were performed. Receiver operating charac-
teristic (ROC) curves were used to represent the sensi-
tivity and specificity of the amyloid-positive patient
detection levels. Significance level was set at P < 0.05.

Results
CSF tau and p-tau quantification on the Montpellier AD
cohort
The Montpellier cohort used in this study was composed
of a relatively small number of samples collected from

thoroughly characterized patients (Sup Table 1). This
cohort consisted of AD patients diagnosed with a high
level of confidence [25] and non-AD (NAD) patients
with various other neurological disorders (PSP, LBD,
FTLD) associated with cognitive deficits. These patholo-
gies are often used for the identification of specific AD
biomarkers as they represent classical differential diag-
nosis of AD. As expected, we observed the existence of a
significant difference (P < 0.0001) between AD and NAD
patients in terms of the ELISA values of total tau (E_
Tau) and tau pT181 (E_pT181) (Table 1). However, as
shown in Fig. 1a and b, several NAD patients obtained
values regarded as pathological in the case of both bio-
markers (above 400 ng/mL and 60 ng/mL of tau and p-
tau (181), respectively [6]). Quantification of pT181 and
pT217 by MS also showed the existence of significant
differences between AD and NAD populations (Table 1).
The distribution of the pT181values obtained by MS,
which was clearly correlated with the ELISA values
(Spearman’s coefficient 0.773; P < 0.0001), also over-
lapped between the AD and the NAD populations
(Fig. 1c), whereas the p217 values discriminated strongly
between the two populations (Fig. 1d). In order to inves-
tigate the differences observed between pT181 and
pT217 more closely, we distributed these values between
the various NAD etiologies (Fig. 1e, f). In some well-
defined cases of FTLD, LBD, or PSP in which the pT181
values were in the AD range, the pT217 values were

Fig. 1 CSF tau and p-tau levels in the Montpellier AD cohort. CSF concentration of total tau (E_tau) and pT181 (E_pT181) measured by ELISA (in
pg/mL) in the NAD and AD population (a, b). CSF concentration of pT181 and pT217 measured by quantitative mass spectrometry (MS) (in fmol/
mL) in the NAD and AD population (c, d) and in the diseases included in the cohort (e, f). ①, ②, and ③ indicate participants with high pT181
level but normal pT217 level. The red arrow indicates participants with mixed dementia having higher MS_p217 level than controls. Differences
between NAD and AD populations are statically significant (see Table 1). Abbreviations: AD Alzheimer disease, NAD non-Alzheimer disease, FTLD
frontotemporal lobar degeneration, LBD Lewy body dementia, PSP progressive supranuclear palsy, ACIH adult chronic idiopathic hydrocephalus
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comparable to those measured in NAD subjects (Fig. 1f,
black arrows). Apart from being associated with high
total tau levels, no obvious clinical signs distinguishing
these patients with high p181 levels were detected
(SupTable1). We also noted that the two mixed demen-
tia patients (Sup Table 1) had the highest pT217 levels
in the NAD population (red arrow).

CSF total-tau, p-tau correlation, and ratio in the
Montpellier AD cohort
In order to present the changes in tau phosphorylation
state independently of the tau phosphorylation levels,
pT181 and pT217 were plotted against their correspond-
ing unmodified counterparts T181 and T217 (Fig. 2).
One sample corresponding to the patient with brain me-
tastasis (black arrow) was taken to be an outlier, since
the unphosphorylated and phosphorylated levels did not
follow the same variation. In addition, the correlation
between the isoforms was highly significant in both NAD
and AD populations (see rho Spearman’s coefficient and P
value in the figure). Interestingly, the slopes of the correla-
tions were higher in the AD population than in the NAD
population, especially in the case of pT217 (regression for-
mula for AD y = 0.426 + 0.0797x, for NAD y = 0.734 +
0.00364x; slope of the ANCOVA comparison P < 0.001).
This suggests that a process of hyperphosphorylation oc-
curs independently of the increase in tau levels in AD. To
further confirm this hypothesis, we determined the p-tau
to tau ratio for each phosphorylated site in the AD and
NAD populations (Fig. 3a). This confirmed the occurrence
of both T181 and T217 hyperphosphorylation in AD pa-
tients, corresponding to 1.3- and 6.0-fold increases in the

T181 and T217 phosphorylation states, respectively, in
AD vs. NAD patients (see also Sup Table 2).

CSF tau pT181 and pT217 levels in the WUSTL cohort
We next investigated the levels of tau pT181 and T217 in
a second cohort of patients with no cognitive complaints
or only mild cognitive impairments attending the Knight
ADRC at WUSTL [30, 32]. This cohort was stratified
using PiB-PET in 33 amyloid-positive (+) and 51 amyloid-
negative (−) participants (Table 1). To improve the sensi-
tivity of the assay, Tau was immunoprecipitated with the
Tau1 antibody (see the “Methods” and [22]). The values of
pT181 measured using either ELISA or quantitative MS
were found to differ significantly between amyloid (+) and
(−) populations (Table 1) but overlapped significantly
(Fig. 4a, b). By contrast, the pT217 also differed but over-
lapped less conspicuously (Fig. 4c). In order to compare
the performances of these biomarkers, we computed the
area under the curve (AUC) of the ROC plotting the sen-
sitivity and specificity for amyloid (+) patient detection at
different cutoffs (Fig. 4d). pT217 (AUC, 0.961) was found
to be more sensitive and specific than pT181, as measured
by performing either ELISA (AUC, 0.833) or MS (AUC,
0.785) (Sup Table 3). We also computed the p-tau/tau ra-
tios of pT181 and pT217 phosphorylation (Fig. 3b) and
confirmed the hyperphosphorylation of both sites in amyl-
oid (+) patients (showing a 1.2- and a 3.5-fold increase, re-
spectively, Sup Table 2).

Relationship between CSF biomarkers and PiB-PET
We then examined whether there existed a correlation be-
tween amyloid PiB-PET and the total and phosphorylated

Fig. 2 MS_pT181 and MS_pT217 plotted against their corresponding unmodified counterparts. CSF concentration of MS_pT181 (a) and
MS_pT217 (b) were plotted on their corresponding unmodified counterparts in the Montpellier cohort. Linear regression was computed in the
AD and NAD populations (rho Spearman’s correlation coefficient and P value are indicated). Note that for MS_pT217, AD and NAD regression
lines have slopes that are significantly different (slope ANCOVA comparison P < 0.001). The sample from the patient with brain metastasis (arrow)
is clearly an outliner with low concentration of phosphorylated peptides and high concentration of non-phosphorylated peptides
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Fig. 3 Site occupancy of phosphorylation on T181 and T217 in the two cohorts. The percentage of T181 and T217 phosphorylation corresponding to
the amount of the phosphorylated peptide divided by the sum of the phosphorylated and non-phosphorylated peptide was plotted in the two
cohorts. Significant differences between NAD and AD or amyloid (−) and (+) populations for the two peptides were observed (see also Sup Table 2)

Fig. 4 CSF p-tau in the WUSTL amyloid-positive cohort. CSF concentration of pT181 (E_pT181) was measured by ELISA (in pg/mL) (a), MS_pT181
(b), and MS_pT217 (c) were measured by quantitative MS (in fmol/mL) in amyloid (−) and (+) populations. The ROC curves of the detection of
the amyloid (+) patients for E_pT181, MS_pT181, and MS_pT217 were plotted (d) (see SupTable 3 for statistical differences between curves). The
MS_pT217 values (e) and percentage of T217 phosphorylation (% MS_pT217, f) were plotted against their corresponding PiB-PET values in the
WUSTL cohort composed of amyloid (−) and (+) patients. Linear regression and correlation coefficients are indicated
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tau levels in CSF from both amyloid (+) and amyloid (−)
patients. Both pT181 and pT217 levels were found to be
significantly correlated with the PiB-PET data, as shown
in Sup Table 4 (correlation coefficients 0.418 and 0.537,
respectively) and illustrated in Fig. 4e, f and in SupFigure 2.
We also examined whether the p-tau/tau ratio for T217
was also correlated with the PiB-PET findings. As shown
in Fig. 4f, pT217/T217 ratio was significantly correlated
with the PiB-PET data, giving an even better coefficient
than with the pT217 levels (correlation coefficients 0.689
and 0.719, respectively).

Discussion
Using targeted quantitative MS to quantify low-
abundance phosphorylated tau peptides (pT181 and
pT217) and their unmodified counterparts, we found
compelling evidence that patients’ CSF pT181 and
pT217 levels had undergone AD-specific changes. These
changes were characterized by an increase both in the
total concentrations and in the occupancy of phosphor-
ylation on each site measured as p-tau/tau ratios. They
were particularly pronounced in the case of CSF pT217,
which was 3 to 6 times more phosphorylated in preclin-
ical to advanced AD patients from two independent,
well-characterized cohorts in comparison with the corre-
sponding control values. This finding is consistent with
the increased pT217 levels detected in the brains of AD
patients measured using MS methods [13, 15, 33] or
with anti-p-tau antibody AT100, which recognizes
pT212, pS214, and pT217 [33]. It is also in keeping with
the fact that pT217 has been detected in aggregated tau
extracted from AD patients’ brains [33, 34]. As far as the
possible pathological consequences of T217 phosphoryl-
ation are concerned, it was previously established that
preventing this process by mutating threonine 217 to
alanine reduces the ability of p-tau to promote micro-
tubule assembly in vitro [33] and to bind to SH3 do-
mains such as the BIN1 SH3 domain [35]. All in all,
these findings show that pT217 is linked to the patho-
physiology of AD. The mechanism underlying T217
phosphorylation is still a matter of debate, which is also
the case with the majority of tau phosphorylation sites.
GSK-3, PKA, and the stress-activated protein kinases
SAPK4/p38 or JNK2 generating the AT100 epitope
might be involved [33, 34, 36]. Further experiments on
pT217 would help to explain its high, early, specific con-
tribution to the positive amyloid imaging results. These
findings also suggest that T217 is an interesting new
candidate for developing a targeted therapeutic approach
in the field of AD [36]. Our results clearly show that
CSF pT217 outperforms pT181 as a means of AD diag-
nosis. The detection of pT181 is generally held, however,
to be the “gold standard” for detecting AD in the CSF
[37, 38], and its recent detection in blood also suggests

that this finding may lead to some interesting applica-
tions [39]. The fact that pT181 detection has been so
widely used in clinical practice is no doubt due to the
high levels of this peptide detected in AD patients (here
it amounted to around 20% of the total tau) in compari-
son with other phosphorylated sites such as pT217 and
to the availability of high-performance immunodetection
assays which can be used for pT181 quantification. The
present limitations to AD diagnosis encountered using
CSF amyloid and tau biomarkers [3–6, 40–42] might be
overcome if pT217 is used instead of pT181. It is our be-
lief that the future of accurate AD diagnosis will include
pT217 or other phosphorylation sites which are more
specific AD markers than pT181. Universal cutoff values
of pT217 optimal for AD detection will have to be deter-
mined on larger cohorts, and using reference material.
To evaluate the added diagnostic value of pT217, we also
compared the performance of pT181 and pT217 alone or
as a ratio with Aß1-42 (SupFigure 1 and SupTable3). In
the Montpellier cohort, the added value of the ratio pTau/
Aß1-42 was not apparent which might be related to the
poor performance of Aß1-42 in confirmed/advanced AD.
In the WUSTL cohort, which focuses on amyloidosis, the
added value of the ratio was present especially for pT181.
Additional experiments with larger cohorts will be needed
to have an optimal clinical use of the detection of pT217
alone, or most likely in combination with amyloid bio-
markers. The present results also show that the pT217
levels are strongly indicative of the amyloid plaque load,
as measured with PiB-PET. This finding is in line with
longitudinal studies showing that amyloid impairments
are involved in tau pathology [11, 43–46]. The molecular
mechanism whereby amyloid and Tau pathologies con-
tribute to AD might depend on the influence of Aβ on ki-
nases such as GSK-3β [47, 48], which might result in the
phosphorylation of tau at many sites, including T181 and
pT217 [34]. Further studies focusing on T217 phosphoryl-
ation, using PET-tau imaging or other approaches, are
now required in order to understand the exact role of
pT217 in the cascade of molecular events that lead to AD.
The finding that the pT217/T217 ratio (the percentage oc-
cupancy of phosphorylation on T217) is highly correlated
with the amyloid load suggests the occurrence of a series
of changes that could be used to follow the progression of
the disease and/or improve the possibility of predicting
the risk of cognitive decline in individuals who have con-
verted/are converting to clinical AD [44].

Limitations
This study has several limitations. First, the present AD
cohort was rather small, which is nevertheless counter-
balanced by the detailed clinical and biological data on
the patients. In addition, the second cohort was stratified
based on the presence of brain amyloidosis, which is not
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always equivalent to AD. Lastly, this study does not in-
clude any longitudinal data that might have served to
document the changes in biomarkers with respect to the
progression of the disease.

Conclusions
In conclusion, the results of this study suggest that
pT217 is a more accurate biomarker than pT181, which
could be used to improve the diagnosis and follow-up of
preclinical to advanced cases of Alzheimer’s disease. It
should therefore constitute a promising new target for
therapeutic applications. These findings also suggest/
show that amyloid plaques contribute to the processes
responsible for tau pathophysiology.
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