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Focused ultrasound-induced blood-brain
barrier opening improves adult
hippocampal neurogenesis and cognitive
function in a cholinergic degeneration
dementia rat model
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Abstract

Background: The persistence of adult hippocampal neurogenesis (AHN) is sharply decreased in Alzheimer’s disease
(AD). The neuropathologies of AD include the presence of amyloid-3 deposition in plaques, tau
hyperphosphorylation in neurofibrillary tangles, and cholinergic system degeneration. The focused ultrasound (FUS)-
mediated blood-brain barrier opening modulates tau hyperphosphorylation, the accumulation of amyloid-3
proteins, and increases in AHN. However, it remains unclear whether FUS can modulate AHN in cholinergic-
deficient conditions. In this study, we investigated the effect of FUS on AHN in a cholinergic degeneration rat
model of dementia.

Methods: Adult male Sprague-Dawley rats (n = 48; 200-250 g) were divided into control (phosphate-buffered saline
injection), 192 IgG-saporin (SAP), and SAP+FUS groups; in the two latter groups, SAP was injected bilaterally into
the lateral ventricle. We applied FUS to the bilateral hippocampus with microbubbles. Immunohistochemistry,
enzyme-linked immunosorbent assay, immunoblotting, 5-bromo-2"-deoxyuridine labeling, an acetylcholinesterase
assay, and the Morris water maze test were performed to assess choline acetyltransferase, acetylcholinesterase
activity, brain-derived neurotrophic factor expression, neural proliferation, and spatial memory, respectively.
Statistical significance of differences in between groups was calculated using one-way and two-way analyses of
variance followed by Tukey's multiple comparison test to determine the individual and interactive effects of FUS on
immunochemistry and behavioral analysis. P < 0.05 was considered significant.

Results: Cholinergic degeneration in rats significantly decreased the number of choline acetyltransferase neurons
(P<0.05) in the basal forebrain, as well as AHN and spatial memory function. Rats that underwent FUS-mediated
brain-blood barrier opening exhibited significant increases in brain-derived neurotrophic factor (BDNF; P < 0.05),
early growth response protein 1 (EGR1) (P < 0.01), AHN (P < 0.01), and acetylcholinesterase activity in the frontal
cortex (P < 0.05) and hippocampus (P < 0.01) and crossing over (P < 0.01) the platform in the Morris water maze
relative to the SAP group after sonication.
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Conclusions: FUS treatment increased AHN and improved spatial memory. This improvement was mediated by
increased hippocampal BDNF and EGR1. FUS treatment may also restore AHN and protect against
neurodegeneration, providing a potentially powerful therapeutic strategy for AD.

Keywords: Rats, Sprague-Dawley, Brain-derived neurotrophic factor, Microbubbles, Sonication, Hippocampus,

Background

Adult neurogenesis appears to be restricted to two re-
gions, i.e., the subventricular zone (SVZ) of the lateral
ventricles and the subgranular zone (SGZ) of the hippo-
campal dentate gyrus (DG). Importantly, adult hippo-
campal neurogenesis (AHN) was first reported over 50
years ago by Altman and Das [1], and newborn neurons
are generated continuously throughout life in the mam-
malian brain, including the human brain [2, 3]. Since
then, numerous studies have reported that AHN is im-
plicated in cognition and endogenous repair mechanisms
in normal physiological conditions such as learning and
memory [4]. Interestingly, according to the recent re-
search, the persistence of AHN appears to be decreased
in aged adults and Alzheimer’s disease (AD) [5, 6].

AD is one of the major causes of age-related dementia
and is characterized by cognitive impairment, amyloid-3
deposition in plaques, tau hyperphosphorylation in
neurofibrillary tangles, loss of synapses, loss of neuronal
cells, and cholinergic dysfunction [7]. Dysfunction of the
basal forebrain cholinergic (BFC) system, a significant
characteristic of AD, induces neuropathological changes
before clinical symptoms manifest [8—10]. The hippo-
campus and cortex receive gamma-aminobutyric acider-
gic, glutamatergic, and cholinergic input from the basal
forebrain of the medial septum-diagonal band complex
(MS/DB) [11, 12]. Thus, lesions in, or the inactivation
of, cholinergic neurons in MS/DB result in a decrease of
acetylcholinesterase (AChE) and choline acetyltransfer-
ase (ChAT), consequently diminishing AHN [13-16].

Despite intensive research efforts, none of the cur-
rently available treatments for AD can completely cure
or prevent the course of age-related cognitive impair-
ment, and the pathological mechanism is not clearly
understood. Numerous pharmacological therapies have
been developed to treat AD [17]. However, 98% of
small-molecule drugs (<400Da) and 100% of large-
molecule drugs (>500 Da) cannot cross the blood-brain
barrier (BBB) [18], making the prevention and treatment
of brain disorders difficult.

Focused ultrasound (FUS) combined with contrast
agent microbubbles is a noninvasive technique that tran-
siently opens BBB in targeted regions, thereby enabling
localized therapeutic drug, gene, or nanoparticle delivery
into the brain for treating central nervous system (CNS)

disorders [19-21]. Considering that drugs that have
been, or are currently being, developed for AD are
mostly large molecules, FUS may enhance the effects of
these drugs especially in patients with early-stage AD
who have an intact BBB [22]. Moreover, several reports
suggest that FUS stimulates neuronal activity and modu-
lates proteomes and transcriptomes, independent of any
therapeutic agent [23-25].

Previous studies indicate that FUS-mediated BBB
opening can modulate the accumulation of amyloid-$
and tau hyperphosphorylation in AD transgenic mice
and increase AHN in wild-type mice [26—30]. Recently,
Moreno-Jiménez et al. reported the persistence of AHN
in human DG of subjects aged over 90 years; however,
the number and maturation of immature neurons in DG
sharply decreased in patients with AD. This finding has
gained attention for potential therapeutic strategies as an
underlying memory impairment in AD [31]. However, it
remains unclear whether FUS can modulate AHN in a
cholinergic-deficient condition. In this study, we investi-
gated the effect of FUS on AHN and the cholinergic sys-
tem in a cholinergic degeneration dementia rat model,
which is a key pathogenic feature of dementia. Further-
more, if FUS was effective in increasing AHN, the syner-
gistic effects of AHN modulation and drug delivery
could improve treatment outcomes of AD.

Materials and methods

Ethical considerations

All animal experimental procedures were conducted in
compliance with the Guide for the Care and Use of La-
boratory Animals of the National Institutes of Health
and were approved by the Institutional Animal Care and
Use Committee (IACUC; 2016-0339) of Yonsei Univer-
sity. Animals were housed in groups of three in labora-
tory cages with food and water available ad libitum in a
12-h light/dark (lights on at 07:00) cycle in a room with
controlled temperature (22 £2°C) and humidity (55 +
5%).

Rat model generation

Previous studies have modeled cholinergic degeneration
and cognitive function-impaired dementia in rats by in-
traventricularly administering the selective immunotoxin
192 IgG-saporin (SAP) to induce lesions in BFC neurons
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[32-35]. To investigate the effect of FUS on AHN in a
cholinergic degeneration rat model of dementia, adult
male Sprague Dawley rats (n =48; 200-250 g) were di-
vided into control (phosphate-buffered saline [PBS] in-
jection), SAP, and SAP+FUS groups. The dementia rat
model (SAP, n = 16; SAP+FUS, n = 16) was generated by
injecting SAP (Chemicon, Temecula, CA, USA), and the
control group (n = 16) received a bilateral ventricular in-
fusion of 1x PBS (PH 7.4) into the brain. All 48 rats
were anesthetized with a mixture of ketamine (75 mg/
kg), xylazine (Rompun™ 4 mg/kg), and acepromazine
(0.75 mg/kg) and were fixed in a stereotaxic frame. As
previously described, scalp skin was incised, and two
holes were drilled into the skull at the following coordi-
nates: from the bregma anterior-posterior, — 0.8 mm;
medial-lateral, +1.2mm; and dorsal-ventral, - 3.4 mm
[36]. Thereafter, 4 ul of SAP (0.63 pug/pl) was bilaterally
injected at a rate of 1 pl/min into the lateral ventricle of
the rats in the SAP and SAP+FUS groups using a syringe
pump (Legato 130, 788130, KD Scientific, Holliston,
MA, USA). As shown in Fig. 1a, rats were sacrificed at
different time points, i.e., 24 h, 5days, and 18 days after
FUS. To detect changes in AChE and BDNF expression
levels, observe proliferation and neuroblast production,
and observe neuronal differentiation of BrdU-positive
cells and long-term effects of AChE and BDNF, the rats
were sacrificed 24'h, 15days, and 18days after FUS,
respectively.

Focused ultrasound
The pulsed ultrasound was generated using a 0.5-MHz
single-element spherically focused transducer (H-
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107MR, Sonic Concept Inc., Bothell, WA, USA) with a
diameter of 51.7 mm and radius of curvature of 63.2
mm. A waveform generator (332204, Agilent, Palo Alto,
CA, USA) was connected to a 50-dB Radio Frequency
Power Amplifier (240 L, ENI Inc., Rochester, NY, USA)
to drive the FUS transducer, and a power meter
(E4419B, Agilent) was used to measure the input elec-
trical power. The transducer electrical impedance was
matched to the output impedance of the amplifier
(50 Q) with an external matching network (Sonic Con-
cept Inc., Bothell, WA, USA). A cone filled with distilled,
degassed water was mounted onto the transducer assem-
bly (Additional file 1: Figure S1). A needle-type hydro-
phone (HNA-0400, Onda, Sunnyvale, CA, USA) was
used for the transducer calibration, which measured the
acoustic beam profile in the tank filled with degassed
water. The transducer was mounted on the cone filled
with degassed water, and the end of its tip was wrapped
in a polyurethane membrane.

The experimental procedure is shown in Fig. 1. Briefly,
rats were anesthetized with a mixture of ketamine (75
mg/kg) and xylazine (4 mg/kg), and their heads mounted
on a stereotaxic frame (Narishige, Tokyo, Japan) with
ear and nose bars. Ultrasound transmission gel (ProGel-
Dayo Medical Co., Seoul, South Korea) was used to
cover the area between the animal’s skull and the cone
tip to maximize the transmission efficiency of the ultra-
sound. FUS was targeted bilaterally to the region con-
taining the hippocampus according to the 3D
positioning system. DEFINITY® microbubble contrast
agents (mean diameter range, 1.1-3.3 um; Lantheus
Medical Imaging, North Billerica, MA, USA) were
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Fig. 1 Schematic of the experimental procedure and FUS system. a Timeline of the focused ultrasound (FUS) experiment for the analysis of AChE
activity and BDNF expression 24 h after sonication (control, n =4; 192 IgG-saporin [SAP], n =4; SAP+FUS, n=4). b BrdU and doublecortin (DCX) 5
days after sonication (control, n =4; SAP, n=4; SAP+FUS, n =4). ¢ AChE, BDNF, BrdU/NeuN, and BrdU/GFAP 18 days after sonication (control, n=
8; SAP, n=8; SAP+FUS, n=28). d Confirmed FUS-mediated blood-brain barrier (BBB) opening with MRI. Gadolinium-enhanced T1-weighted images
show contrast enhancement. Arrow indicates regions of BBB opening. e Confirmed FUS-mediated edema with T2-weighted MRI

18 days after FUS;
(n=8/ group)
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diluted in saline and injected intravenously into the tail
vein 10 s before sonication. Sonication parameters were
set as follows: burst duration, 10 ms; pulse repetition fre-
quency, 1Hz; total duration, 120s; and average peak-
negative pressure, 0.25 MPa.

Magnetic resonance imaging

After sonication, magnetic resonance imaging (MRI) ex-
periments were performed with a Bruker 9.4 T 20-cm-
bore MRI system (Biospec 94/20 USR; Bruker, Ettlingen,
Germany) and a rat head coil. A gadolinium-based con-
trast agent, gadobutrol (Gd, Gadovist; Bayer Schering
Pharma AG, Berlin, Germany; 0.2 mL/kg), was injected
into the tail vein, and contrast-enhanced T1-weighted
images were used to confirm the BBB opening from the
FUS. T1-weighted MRI was performed with and without
the use of gadobutrol contrast (Fig. 1d). T2-weighted im-
ages were used to confirm edema with FUS (Fig. le). Se-
quence parameters are summarized in Table 1.

Behavioral test—Morris water maze

Rats underwent the Morris water maze (MWM) test at
2 weeks after receiving SAP injection. The MWM appar-
atus comprised a circular pool (diameter, 2 m; height,
50 cm) filled to a depth of 30 cm with dark water (23 °C).
A concealed black, round platform (diameter, 15 cm)
was situated 1-2 cm below the surface of the water in
the center of a target quadrant. All rats were trained for
four trials per day for 5 consecutive days. During train-
ing, the location of the hidden platform was fixed, and
spatial cues were provided for guidance. For each train-
ing trial, the rats were placed in the water facing the wall
at one of the four starting points and were given 60 s to
reach the hidden platform. After finding the platform,
the rats were allowed to remain on the platform for 10s.
The rats that could not find the platform within 60 s
were led to the platform by the experimenter and were
allowed to remain on the platform for 10s. The rats
were given a 60-s probe test without the platform 72h
after the last training trial. Swimming speed, swim path,
time spent in each zone, and distance swam were

Table 1 Sequences and parameters of MRI

T1-weighted Imaging T2-weighted Imaging

Echo 1 1

TR (ms) 350 2500

TE (ms) 54 33

FA (deg) 40 180

NEX 2 2

FOV (cm) 35 35

Matrix 256 X 256 256 X 256

TR repetition time, TE time to echo, FA fractional anisotropy, NEX number of
excitations, FOV field of view
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recorded using the SMART video-tracking system (Har-
vard Apparatus, Holliston, MA, USA).

BrdU labeling

To investigate the effect of FUS on neurogenesis, ani-
mals were injected intraperitoneally with 5-bromo-2'-
deoxyuridine (BrdU; Sigma-Aldrich, St. Louis, MO,
USA), used for the detection of proliferating cells, twice
a day for 4 consecutive days, 24 h after sonication [30,
37].

Histological evaluation

Brain tissue preparation

The animals were sacrificed 5 days (n =4 per group) or
18 days (n =4 per group) after FUS sonication. The rats
were anesthetized via the intraperitoneal injection of a
mixture of ketamine (75 mg/kg) and xylazine (4 mg/kg).
For the blood wash-out and brain fixation, transcranial
perfusion was performed with 0.9% normal saline and
4% paraformaldehyde in 1x PBS. After perfusion, all
brains were post-fixed in 4% paraformaldehyde for 1 h.
Subsequently, the brain tissue was transferred to a 30%
sucrose solution for 3 days. The brains were then sec-
tioned into 30-um-thick slices using a Leica CM1850
cryostat (Leica Biosystems, Wetzlar, Germany).

Immunohistochemistry

To determine the effects of FUS on cell proliferation, 24
h after sonication, brain sections were incubated in 0.3%
H,0O, for 15min to inactivate endogenous peroxidase
activity. DNA denaturation was then performed by anti-
gen retrieval in 2N HCl at 37°C for 90 min and
neutralization twice with 0.1 M borate buffer for 10 min.
The sections were then washed with PBS, blocked with
5% normal goat serum for 1h, and incubated overnight
at 4 °C with the following monoclonal antibodies diluted
in PBS containing 0.3% normal goat serum and 0.3%
Triton X-100: mouse anti-BrdU (1:150, BMC9313,
Roche Molecular Biochemicals, Mannheim, Germany),
rabbit anti-early growth response 1 antibody (EGRI; 1:
200, 4153S, Cell Signaling Technology, Inc., Beverly,
MA, USA), goat anti-DCX (1:200, SC8066, Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA), and goat
anti-ChAT (1:100, AB144P, Millipore, Bedford, MA,
USA). Thereafter, the sections were incubated with
affinity-purified biotinylated goat anti-mouse IgG sec-
ondary antibodies (1:400, BA-9200, Vector Laboratories,
Burlingame, CA, USA), affinity-purified biotinylated
rabbit anti-goat IgG secondary antibodies (1:400, BA-
5000, Vector Laboratories, CA, USA), affinity-purified
biotinylated goat rabbit anti-IgG secondary antibodies
(1:400, BA-1000, Vector Laboratories, CA, USA), and
affinity-purified biotinylated according to the avidin-
biotin complex method (ABC Elite; Vector Laboratories,
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CA, USA). Immunoreactivity was evaluated using a DAB
substrate kit (Thermo Fisher Scientific, Fremont, CA,
USA). EGR1 was counterstained using hematoxylin (H-
3401, Vector Laboratories, CA, USA). The samples were
examined using an optic microscope (BX51; Olympus,
Tokyo, Japan).

Immunofluorescence staining

The sections were double stained with BrdU and NeuN
or BrdU and GFAP and then incubated for 2 h in a mix-
ture of mouse monoclonal anti-BrdU (1:150, BMC9313,
Roche Molecular Biochemicals, Mannheim, Germany)
and either rabbit polyclonal anti-NeuN (Neuronal nuclei;
1:500, ABN78, Millipore, Bedford, MA, USA) or goat
polyclonal anti-GFAP (Glial fibrillary acidic protein;
AB7260 1:200, Abcam Cambridge, MA, USA). This was
followed by a 2-h incubation in a mixture of goat anti-
mouse Alexa Fluor® 594 IgG (1:500, A11005, Invitrogen,
Carlsbad, CA, USA) (BrdU) and goat anti-rabbit Alexa
Fluor® 488(1:500, A11008, Invitrogen, Carlsbad, CA,
USA) (NeuN, GFAP) at room temperature. Fluorescence
signals were confirmed using a Zeiss LSM 710 confocal
imaging system (Carl Zeiss, Oberkochen, Germany) with
a sequential scanning mode for Alexa 594 and 488.
Stacks of images (1024 x 1024 pixels) from consecutive
0.9-1.2-pm-thick slices were obtained by averaging eight
scans per slice. The resulting images were processed
with ZEN 2010 (Carl Zeiss).

Quantification of cell counting

Seven coronal sections (185-pm intervals) from each ani-
mal, collected from 3.2 to 4.5mm posterior to the
bregma, were analyzed to quantify the BrdU-, DCX-,
and EGRI1-positive cells. The sections were photo-
graphed using a virtual microscope (BX51; Olympus)
with a x 10 objective. Coded sections were counted by a
blinded observer who quantified the number of BrdU-
and DCX-positive cells in the bilateral subgranular zone
(SGZ) and granular cell layer (GCL) of the dentate gyrus
(DG) and the number of EGR1-positive cells in the bilat-
eral CA1l, CA3, and DG of the hippocampus. To analyze
the phenotype of BrdU-positive cells, we determined
whether BrdU-positive cells in the SGZ and GCL (SGZ/
GCL) expressed NeuN or GFAP with confocal micros-
copy. A double-positive percentage was calculated as
BrdU+/NeuN+ or BrdU+/GFAP+ for total BrdU-positive
cells in the SGZ/GCL.

ELISA and immunoblotting

Brain sample preparation

At 24h (n=12) and 18 days (n = 12) after sonication, the
remaining rats from each group were anesthetized with
a mixture of ketamine (75mg/kg), xylazine (4 mg/kg),
and acepromazine (0.75mg/kg). They were then
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decapitated with a guillotine, and their brains removed.
The prefrontal cortex and hippocampus regions were
dissected with fine forceps to yield 1-mm coronal brain
slices using a rat brain slicer matrix. These samples were
homogenized in a Kontes glass homogenizer (Kontes
Glass Co., Vineland, NJ, USA) with a protein extraction
solution containing 1.0 mM PMSF, 1.0 mM EDTA, 1 uM
pepstatin, 1 pM leupeptin, and 1pM aprotinin (PRO-
PREP, Catalog no. 17081, iNtRON Biotechnology,
Seongnam, Korea). After extraction, the slices were cen-
trifuged for 20 min at 12,000 rpm. The total protein con-
centration was measured using the bicinchoninic acid
protein assay reagent kit (Pierce, Rockford, IL, USA). All
extraction steps were performed at 4°C, and protein
samples were stored at — 80 °C until use.

AChE assay

To evaluate the enzymatic activity of AChE, the modi-
fied version of the method of Ellman et al. was used
[38]. In brief, 20-ul triplicate samples were mixed with a
reaction mixture (0.2 mM 5, 5'-dithiobis (2-nitrobenzoic
acid) [Sigma-Aldrich], 0.56 mM acetylthiocholine iodide
[Sigma-Aldrich], 10 uM tetraisopropyl pyrophosphora-
mide [Sigma-Aldrich], and 39 mM phosphate buffer; pH
7.2) at 37°C for 30 min. The quantification of optical
density was performed at a wavelength of 405 nm.

Western blot analysis

Western blot analyses were performed on the same pro-
tein samples as those used for the AChE assay. Twenty
micrograms of each protein were separated by 12%
sodium-dodecyl-sulfate-polyacrylamide gels and electro-
transferred onto polyvinylidene fluoride membranes
using a Bio-Rad miniature transfer apparatus for 100
min at 0.3 A. The membranes were then blocked using a
blocking buffer (5% non-fat dry milk in PBS containing
0.05% Tween 20) for 1h at room temperature (25 °C).
The membranes were then incubated with primary anti-
bodies overnight at 4°C with rabbit monoclonal anti-
brain-derived neurotrophic factor (BDNF, 1:1000;
Abcam, Cambridge, UK) and mouse monoclonal anti-3-
actin (1:10000; Sigma-Aldrich). The corresponding sec-
ondary antibodies were then applied for 90 min at room
temperature with goat anti-rabbit IgG(H+L)-HRP (1:
2000 at BDNF; GenDEPOT, Katy, TX, USA) and goat
anti-mouse IgG(H+L)-HRP (1:10000; GenDEPOT). The
proteins were visualized using an enhanced chemilumin-
escence solution (WEST-Queen western blot detection
kit, iNtRON Biotechnology), and blots were analyzed
using a LAS 4000 mini (GE Healthcare Life Sciences).
The intensity of each band was measured using optical
densitometry of the analysis system (Multi Gauge ver-
sion 3.0; Fuyjifilm, Tokyo, Japan).
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Statistical analysis

All data are expressed as mean + standard error of the
mean. Statistical significance of differences between
groups was calculated using one-way and two-way
analysis of variance followed by Tukey’s multiple
comparisons test to determine the individual and
interactive effects of FUS on immunochemistry and
behavioral analysis. P<0.05 was considered signifi-
cant. All statistical analyses were performed using
SPSS (Version 20, SPSS Inc., Chicago, IL, USA) and
GraphPad Prism 5 software (GraphPad Software Inc.,
San Diego, CA, USA).

Results

Confirmation of cholinergic degeneration by SAP

To confirm cholinergic degeneration in our model, we
quantified ChAT-immunopositive cells in MS/DB of
each group of rats. Five days after sonication, compared
with the control group (100 +3.5%), both the SAP
(65.5+13.1%; P< 0.05) and SAP+FUS (48.6+5.05;
P < 0.01) groups displayed a significantly reduced num-
ber of ChAT-immunopositive neurons (Fig. 2b). Eight-
een days after sonication, compared with the control
group (100 +10), both the SAP (18.7+4.3; P< 0.001)
and SAP+FUS (13.89 £ 5.9; P< 0.001) groups had signifi-
cantly fewer ChAT-immunopositive neurons and less
neuronal damage to cholinergic neuron bodies (Fig. 2c).
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These results indicate that the number of cholinergic
neurons were decreased in all groups at 5 and 18 days,
which provide supporting evidence that dementia model
using SAP was effective.

FUS affects AChE activity in a dementia rat model

To determine whether FUS affects cholinergic neuronal
activity, we quantified AChE activity in each group.
Twenty-four hours after sonication, AChE activity was
significantly reduced in the SAP group in the frontal
cortex (FC; 68.61 +3.02%; P< 0.05) and hippocampus
(86.12 + 1.43%; P < 0.05) compared with that in the con-
trol group (Fig. 3a, b).

Eighteen days after sonication, AChE activity was sig-
nificantly decreased in the SAP group in the FC (74.85 +
3.62%; P<0.05) and hippocampus (83.70 £ 1.61%; P <
0.01) compared with that in the control group (Fig. 3c,
d). However, the AChE activity of the hippocampus was
significantly increased in the SAP+FUS group (94.03 +
2.33%; P<0.01) compared with that in the SAP group.
The AChE activity of the FC was increased in the SAP+-
FUS group (90.79 £ 5.30%; P =0.09) compared with that
in the SAP group, but there was no significant difference
between the two groups (Fig. 3¢, d).

As a result, cholinergic degeneration of MS induced
decreased activities of AChE in both FC and hippocam-
pus at 24 h and 18 days. The effect of FUS treatment in
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Fig. 2 Dementia modeling confirmation of cholinergic lesion with 192 IgG-saporin reduces ChAT in MS/DB. a Representative histological sections
showing the effect of the cholinergic lesion on MS/DB. The number of ChAT-positive cells was significantly decreased in both the SAP and
SAP+FUS groups compared with that in the control group. Scale bar represents 200 um. b Five days after sonication and ¢ 18 days after
sonication, bar graph represents ChAT-positive cells in MS/DB. Data are expressed as mean + SE. n = 3-4 for each group. *P < 0.05, **P < 0.01,

***P < 0.001; one-way ANOVA with Tukey's multiple comparisons test
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Fig. 3 FUS increases AChE activity BDNF expression levels in a dementia rat model. a Twenty-four hours after sonication, AChE activity was
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sonication. BDNF levels in the FUS group increased significantly compared with those in the SAP and control groups. f Bar graph represents
BDNF expression levels in the hippocampus. g Eighteen days after sonication, BDNF expression in the hippocampus in the FUS group increased

significantly compared with that in the SAP and control groups. h Bar graph represents BDNF expression levels in the hippocampus. Data are
expressed as mean + SE. n = 3-4 for each group. *P < 0.05, **P < 0.01; one-way ANOVA with Tukey's multiple comparisons test

AChE activities was only observed in the hippocampus
at 18 days.

FUS increases mature-BDNF expression in a dementia rat
model

BDNF acts on specific neurons by promoting neurogenesis,
which is crucial for long-term memory. To examine the ef-
fects of FUS on BDNF expression in the hippocampus, we
performed immunoblotting analyses using brain samples
from the hippocampal region obtained at 24 h and 18 days
after sonication. The BDNF gene produces immature BDNF
protein (17~32 kDa) and BDNF mature form (~ 13 kDa) by
intracellular and extracellular proteases (Additional file 1:
Figure S2) [39]. At both time points, compared with the
control group, the SAP group (24 h: 80.15 + 6.16%; 18 days:
60.79 + 4.09%; P < 0.05) exhibited a significantly reduced ex-
pression level of mature-BDNF in the hippocampus,
whereas compared with the SAP group, the SAP+FUS
group (24 h: 108 +4.81%; P <0.01; 18 days: 73.37 + 10.63%;
P <0.05) showed a significantly increased level of mature-
BDNF (Fig. 3e-h).

The cholinergic degeneration of MS induced decreased
expression level of BDNF in the hippocampus at 24 h
and 18days. In contrast, FUS could upregulate the
BDNF at the same time points.

FUS affects EGR1 activity in a dementia rat model

EGRI, a transcriptional regulator, is extensively used as
a marker for neuronal plasticity. To investigate whether
FUS affects the transcription factor of EGR1 expression
at 5days after sonication, the number of EGR1-positive
cells was visualized using immunohistochemistry. The
SAP group exhibited a significantly lower number of
EGRI1-positive cells in CA1 (117 +4; P< 0.001), CA3
(67+9; P< 0.01), and DG (159+6; P< 0.01) of the
hippocampus than the control group (CAl, 163+ 2;
CA3, 87 +4; DG, 229 + 15). However, the EGR1 activity
in the FUS group indicated a significant increase in CA1
(135+4; P<0.05), CA3 (77+4; P<0.05), and DG
(199 £ 5; P <0.05) compared with that in the SAP group
(Fig. 4a, b).

These results indicate that cholinergic degeneration of
MS caused the decreased activities of EGR1 in hippo-
campal region at 5days, and FUS significantly upregu-
lated the activities of EGR1 than SAP group.

Effect of FUS exposure on the proliferation and
neuroblast production in DG

The rats in each group were sacrificed 5 days after bilat-
eral sonication of the hippocampal regions. Twenty-four
hours after sonication, BrdU labeling was performed for
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Fig. 4 FUS upregulates EGR1 and proliferates neuroblast production in a dementia rat model. a Representative EGR1-stained brain sections 5 days
after sonication. Compared with the SAP and control groups, the SAP+FUS group showed a significant increase in EGR1-positive cells in CAT,
CA3, and DG of the hippocampus. Scale bar represents 100 um. b Quantification of bar graph displays the number of EGR1-positive cells in CA1,
CA3, and DG of the hippocampus. ¢ Representative BrdU-stained brain sections 5 days after sonication. Compared with the SAP and control
groups, the SAP+FUS group showed a significant increase in BrdU-positive cells in the SGZ of the DG of the hippocampus. Scale bar represents
100 pum. d Bar graph displays the number of BrdU-positive cells in SGZ of DG. e Representative DCX-stained brain sections 5 days after sonication.
Compared with the SAP and control groups, the SAP+FUS group showed a significant increase in DCX-positive cells in SGZ of DG. Scale bar
represents 100 um. f Bar graph displays the number of DCX-positive cells in SGZ of DG. Data are expressed as mean + SE. n = 3-4 for each group.
*P<0.05, **P <001, **P <0.001; one-way ANOVA with Tukey's multiple comparisons test. The scale bar represents 100 um

4 consecutive days for each group to observe progenitor
cell proliferation in SGZ of DGs. We observed a de-
crease in the number of BrdU-positive cells in the SAP
group (65 *6; P<0.05) compared with that in the con-
trol group (117 + 18), while this number was significantly
increased in the SAP+FUS group (137 +10; P<0.01)
compared with that in the SAP group (Fig. 4c, d).

To investigate whether FUS affects newly generated
immature neurons, the number of neuroblasts was visu-
alized using doublecortin (DCX, a marker for neurogen-
esis) immunohistochemistry. Compared with the control
(196 £21; P<0.05) and SAP+FUS (183+9; P<0.05;
Fig. 4e, f) groups, the SAP group exhibited a significantly
reduced number of DCX-positive cells in DG of the
hippocampus (113 + 14).

It has been suggested that cholinergic degeneration of
MS showed decreased activities of proliferation and
neuroblast production in SGZ at 24 h and 18 days, which
was reversed by FUS.

FUS affects neurogenesis in a dementia rat model
To determine the phenotypic characterization of BrdU-
positive cells 18 days after sonication, sections were ana-
lyzed 2 weeks after the last injection of BrdU: neuronal phe-
notypes were identified by double-immunofluorescence
labeling for NeuN and BrdU and glial phenotypes by
double-immunofluorescence labeling for GFAP (astrocyte-
specific marker) and BrdU (Fig. 5a—c). Compared with the
control group (40 + 2), the SAP group (25 + 2; P < 0.01) dis-
played significantly reduced neurogenesis (NeuN+/BrdU+)
in SGZ/GCL of DG. Compared with the SAP group, the
SAP+FUS group (49 £ 1; P<0.001) featured a significantly
increased number of co-expression cells (NeuN+/BrdU+)
in DG. No significant differences in gliogenesis (GFAP+/
BrdU+) (Fig. 5e) and the phenotypes of BrdU-positive cells
expressing NeuN or GFAP in DG (Fig. 5g) were identified
among the groups.

The decreased AHN induced by cholinergic degener-
ation of MS was enhanced by FUS at 18 days. Interest-
ingly, gliogenesis was not affected by FUS.

FUS improved performance in the MWM task
To investigate the effects of FUS on memory and cogni-
tive function, rats (n = 8/group) underwent training for

MWM for 5 consecutive days (14 days post-modeling).
All groups showed a gradual decrease in escape latency
to the platform from the first day to the last day of the
training (Fig. 6a).

In the MWM probe test, rats in the SAP group made
significantly a lower number of crossing over (0.62 +
0.26; P<0.01) and spent less time in the platform area
(0.47 £ 0.16; P <0.05) compared with those in the con-
trol group (crossing over, 3.37+0.7; platform area,
1.44 £ 0.32). In contrast, rats in the SAP+FUS group
showed a significantly higher number of crossing over
(3.12+0.61; P<0.05) and time in the platform area
(1.51 £0.21; P<0.05) compared with those in the con-
trol group (Fig. 6b, c). However, the time spent in the
target quadrant and movement speed were not signifi-
cantly different among the groups (Fig. 6d, e).

These results implicate that cholinergic degradation in
MS reduces the memory and cognitive function, but
FUS can reverse the impairment.

Discussion

Although FUS may remedy the impermeability of BBB
to pharmacotherapy, the effects of FUS on cholinergic
function and AHN have not been elucidated in
cholinergic-deficient conditions. Cholinergic systems
regulate memory processing and cognitive function and
link the memory circuit constituted by FC, hippocam-
pus, and MS [40, 41]. The present study was designed to
measure and analyze the potential effects of FUS in a rat
model of dementia mimicking the BFC depletion in AD.
The cholinergic dysfunction in this model was induced
by intraventricular injection of SAP. This immunotoxin
acts by coupling the ribosome-inactivating protein to a
monoclonal antibody, which has a low affinity for the
nerve growth factor receptor p75, located on BFC
neuron bodies [42, 43]. In this study, we examined the
cholinergic degeneration in this model, and our results
revealed that the number of ChAT neurons was signifi-
cantly reduced in MS of the SAP and SAP+FUS groups
both 5 days and 18 days after FUS (Fig. 2), which proves
that cholinergic dysfunction was well-established in this
rat model, and the results are consistent with our previ-
ous results [33-36, 44, 45].
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sonication. The scale bar represents 20 um. d Quantification of BrdU and NeuN double-labeled cells. Compared with the SAP and control groups,
the SAP+FUS group showed a significant increase in BrdU/NeuN-positive cells. @ No significant differences were found in the numbers of BrdU/
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Because the reduction in AChE activity by cholinergic
lesions in the hippocampus is closely correlated with
Ach and AChE following compensatory mechanisms in-
duced by SAP, we observed AChE activity in FC and the
hippocampus [46] to examine the effects of FUS. Inter-
estingly, the FUS group also exhibited decreases in the
activity at 24'h, suggesting that sonication did not
acutely affect AChE activity at 24 h (Fig. 3a, b). However,
the SAP+FUS group showed a significantly increased

AChE activity in the hippocampus 18 days after sonic-
ation (Fig. 3c, d), which implies that the FUS-mediated
BBB opening resulted in the recovery of AChE levels.
EGR1 can activate AChE gene expression by binding
to the AChE promoter. Overexpression of acetylcholine
and AChE is critical for upregulating proliferative activ-
ity and subsequent neurogenesis [46]. Furthermore,
acetylcholine modulates hippocampal long-term potenti-
ation (LTP), thereby stimulating cholinergic neurons
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and enhancing hippocampal LTP [47, 48]. Another fac-
tor contributing to neurogenesis is BDNF, which has
gained attention for its role in the regulation of synaptic
transmission and plasticity, and neural circuit function
in the CNS [49]. An insufficient supply of endogenous
BDNF leads to neurodegeneration, cognitive impair-
ment, and sharp decreases in neuronal proliferation in
SGZ [50, 51]. Furthermore, dysfunction in the choliner-
gic forebrain system diminishes AHN in DG [52]. FUS
increases neurogenesis in wild-type mice [29], and the
effect of BDNF endures even 24 h after FUS treatment
[24]. Because the correlation between BDNF and AHN

has been already proven in previous research [53], our
goal was to observe changes in BDNF and EGR1 activ-
ities in this model and how those factors could recover
via FUS.

Consistent with previous observations, we demon-
strated that the cholinergic-deficient conditions in the
SAP group significantly reduced BDNF expression levels
in the hippocampus (Fig. 3e, f) [54, 55]. The present
study further demonstrated that the FUS-mediated BBB
opening elevated BDNF expression both 24h and 18
days after sonication of the hippocampus (Fig. 3f~h) and
improved neurogenesis in GCL/SGZ of DG (Fig. 5d).
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These results indicate that FUS can promote BDNF ex-
pression 24 h after sonication, thereby confirming the re-
sults of previous research [24]. The mature BDNF
primarily binds to the TrkB receptor, which plays a role
in the development, maintenance, and differentiation of
neurons and cell survival [56—-58]. The maintenance of
elevated expression of BDNF 18 days after sonication
suggests that BDNF continuously regulates neurogenesis,
synaptic plasticity, and membrane excitability [59, 60].
Our results indicate that diminished cholinergic input to
the hippocampus reduces BDNF expression; FUS-
mediated opening of BBB reverses these effects by
stimulating hippocampal BDNF expression, which con-
sequently regulates AHN positively in cholinergic degen-
eration [4].

Compared with the control group, the SAP group dis-
played decreased levels of EGR1 in the hippocampus
(Fig. 4a), whereas EGR1 activity in the FUS group was
significantly increased compared with that in the SAP
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group. Prior evidence has demonstrated that extracellu-
lar BDNF activates ERK expression by TrkB neurotro-
phin receptor [61]. The activation of transcription
factors, such as CREB and IEGs including c-fos and Egr1,
is followed by increased ERK phosphorylation [62]. This
activation may play a critical role in BDNF upregulation
induced by FUS, which could potentially contribute to
the upregulation of EGR1 (Fig. 4a). In many studies,
EGRI1 transcription factors have been demonstrated to
be major regulators and mediators of synaptic activity
and plasticity under certain physiological conditions [63,
64]. Thus, our findings support prior evidence that
BDNF facilitates the return of EGR1 to normal levels.

Our data support the theory that forebrain acetylcho-
line affects AHN, and a selective cholinergic lesion of
the BFC system induces a decrease in BrdU, EGRI,
DCX, and AChE levels; therefore, these findings indicate
a reduction in proliferation and neuroblast production
in SGZ and a decrease in hippocampal acetylcholine ac-
tivity, respectively [35]. We found that the FUS-
mediated BBB opening led to an increase in BDNF,
EGRI1, and AHN levels, which lead to an improvement
in cognitive function.

Based on results from the behavioral test, we could
also confirm that FUS enhanced memory and cognitive
function. The performance of all rats in all groups grad-
ually improved across 5 days of MWM training, suggest-
ing that rats with cholinergic dysfunction have a similar
level of learning capacity and escape latency compared
with wild-type rats (Fig. 6) [34, 35]. In the probe test,
when compared with the control and FUS groups, the
SAP group displayed a diminished MWM performance
72 h after final training, as measured by the number of
crossing over the platform area and time spent, which
complements the findings of previous studies [33-36,
44]. However, FUS improved spatial memory, and cogni-
tion correlated with increases in EGR1, BDNF, and
AHN. According to a recent study, increases in both
AHN and BDNF levels affected memory improvement,
similar to the effects of exercise in AD transgenic mouse
[65]. However, increases in AHN alone did not have any
effect [65]. Significant differences in speed were not ob-
served among the groups, suggesting that there are no
SAP-induced differences in motor function (Fig. 6e),
which is consistent with our previous findings [35].

Although the data herein showed remarkable effects of
FUS in this rat model, this study has several limitations
that should be addressed in future research. We fixed
sonication parameters to induce 0.25MPa of acoustic
pressure, which was adopted from our previous study
[66]. However, recent studies have used an acoustic
feedback system based on the passive cavitation detector
to prevent tissue damage. This technique may guarantee
appropriate sonication power and could be suitable for
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clinical application. Our previous study demonstrated
that a FUS-mediated BBB opening could be safely and
effectively performed within certain parameters [66].
Moreover, we used MRI to confirm BBB opening (T1W)
without cell edema (T2W) after sonication (Fig. le, f).
Furthermore, we observed increased BDNF expression
only at 24h and 18 days after sonication so different
time points between 24 h and 18 days could be further
studied to assess the changes in BDNF. In addition, we
observed the recovery effects of FUS on EGR1 activities
at 5days in the model; thus, based on these results, we
could assume that neuroblast production and cell migra-
tion might have maintained [53]. We could anticipate
LTP and synaptic strength would recover.

Conclusions

In the present study, we demonstrated that animals with
BFC hypofunction causing spatial memory impairment
exhibit a reduction in cholinergic activity, neurogenesis,
and BDNF and ERG1 expression levels (Fig. 7a). In con-
trast, FUS treatment increased AHN and improved
spatial memory in cholinergic degeneration conditions.
This improvement may be mediated by the upregulation
of BDNF, EGR1, and AChE levels in the hippocampus,
which is a critical factor for regulating AHN, synaptic
plasticity, and neuroprotection (Fig. 7b). Because pa-
tients with AD have impaired cholinergic neurons and
AHN starting at the early stages, FUS treatment may re-
store AHN and have a protective effect against neurode-
generation. Moreover, as FUS has been shown to be
effective in increasing AHN, it could also contribute to
increased permeability of BBB for drug delivery, and
both these effects could be potential therapeutic strat-
egies for AD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513195-019-0569-x.

Additional file 1: Figure S1. The schematic of the FUS experimental
setup. Figure S2. Immunoblot of BDNF of multiple bands at mature-
BDNF (~ 13 kDa) and immature-BDNF (17~32 kDa) were observed at (A)
twenty-four hours after sonication and (B) eighteen days after sonication.
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