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Abstract

Previously, the contribution of peripheral infection to cognitive decline was largely overlooked however, the past
15 years have established a key role for infectious pathogens in the progression of age-related neurodegeneration.
It is now accepted that the immune privilege of the brain is not absolute, and that cells of the central nervous
system are sensitive to both the inflammatory events occurring in the periphery and to the infiltration of peripheral
immune cells. This is particularly relevant for the progression of Alzheimer's disease, in which it has been
demonstrated that patients are more vulnerable to infection-related cognitive changes. This can occur from typical
infectious challenges such as respiratory tract infections, although a number of specific viral, bacterial, and fungal
pathogens have also been associated with the development of the disease. To date, it is not clear whether these
microorganisms are directly related to Alzheimer’s disease progression or if they are opportune pathogens that
easily colonize those with dementia and exacerbate the ongoing inflammation observed in these individuals. This
review will discuss the impact of each of these challenges, and examine the changes known to occur with age in
the peripheral immune system, which may contribute to the age-related vulnerability to infection-induced cognitive

decline.
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Background

It has been estimated that by the year 2050 the population
of individuals over the age of 60 will double from 901
million in 2015 to 2.1 billion people worldwide [1].
Importantly this increase in life expectancy will go hand-
in-hand with an increase in age-related diseases, with the
elderly currently expected to spend more of their later
years in overall ill-health [2]. Indeed dementia, one of the
principle causes of disability in the elderly, currently
affects 44 million people globally, with this figure expected
to increase to over 135 million people by the year 2050
[3]. As the annual cost of dementia care is expected to
increase from $600 billion to $1 trillion over the next
15 years [3], finding a way to prevent disease progression
is vital. This review will summarize the impact of inflam-
mation on the progression of neurodegeneration, with a
focus on the role of infection-related neuroinflammation
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in dementia, which is a rapidly growing area of interest in
the field.

Review

Infection in the elderly and in Alzheimer’s disease

The immune system undergoes many changes with age
that leaves the elderly more susceptible to infection [4],
indeed older individuals are more vulnerable to bacterial
or viral infections of the urinary or respiratory tract,
with influenza-related morbidity also increased in this
group [5, 6]. Sepsis, which is caused by severe infection,
can also lead to permanent cognitive dysfunction, par-
ticularly in older individuals [7]. Importantly, infectious
burden in the elderly is associated with mini-mental
state examination (MMSE) scores below 24, which indi-
cate dementia [8]. This is in line with a previous study
that linked infection with lower MMSE scores, however
Hodgson and colleagues also observed that 36% of
elderly subjects with dementia had an infection which was
formerly undiagnosed [9]. Unfortunately, the symptoms of
infection often present atypically in this group [10] and, as
dementia patients are often unable to communicate their
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symptoms [11], diagnosis is difficult. To further compli-
cate matters, bacterial resistance is often increased in
older patients [12].

Individuals with Alzheimer’s disease (AD) are even
more vulnerable to the effects of peripheral infection. In
a 10-year follow-up study, delirium (which is often
caused by infection) correlated with an eightfold increase
in dementia development [13]. Furthermore, the cogni-
tive capabilities of AD patients worsened significantly
after an episode of delirium, which has been confirmed
by others [14]. Indeed poor health [15] and viral burden
[16] have been linked with cognitive impairment and
AD development in the elderly. Natalwala and colleagues
found that the incidence of many infectious conditions
such as pneumonia, lower respiratory tract, or urinary
tract infections is higher in AD patients than healthy,
age-matched controls [17]. Previous studies have dem-
onstrated that numerous infections over a 4-year period
doubled the risk of AD development [18]. Indeed cogni-
tive decline has been observed just 2 or 6 months after a
resolved peripheral infection, with an association between
cognitive impairment and circulating proinflammatory
cytokines [19, 20]. Pneumonia is a frequent, if not the
most common, cause of death in AD [21, 22], conversely,
vaccination against influenza and other infections signifi-
cantly reduced the risk of AD development [23, 24] and
antibiotic treatment has been observed to slow cognitive
decline in patients [25]. Many specific viral, bacterial, and
fungal pathogens are suspected to play a role in the pro-
gression of neurodegeneration including herpes simplex
virus type 1 (HSV-1), Chlamydia pneumonia, spirochetes,
and Candida [26-28] thus, the contribution of each
pathogenic group will be examined in detail.

Viral infections

Chronic infection with HSV-1 and cytomegalovirus
(CMV) has been implicated in neurodegeneration. HSV-
1 is typically a lifelong, latent infection of the central
nervous system (CNS) and, while the virus has been
found in the brains of control and AD subjects, viral de-
oxyribonucleic acid (DNA) was located in regions such
as the hippocampus, which are particularly affected in
AD [29]. HSV-1 is a risk factor for AD in people carry-
ing the apolipoprotein E epsilon 4 (APOE4) allele,
indeed the allele frequency is much higher in the HSV-
1-infected than non-infected AD population [28, 30]. In
vitro studies have demonstrated that HSV-1 triggers
amyloid precursor protein (APP) processing, resulting in
the production of amyloid 3 (Ap) via - and y-secretases
[31], and murine studies have shown that APOE4-express-
ing mice have a significantly enhanced viral burden after
infection with HSV-1 [32]. It is believed that HSV-1
outcompetes ApoE4 in binding to heparan sulfate proteo-
glycans (HSPG) on the cell surface, thus facilitating viral
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internalization and infection of the host cell in APOE4
carriers in particular [26].

CMYV is another lifelong, latent infection that, along
with HSV-1, was associated with lower MMSE scores in
the elderly [16]. In a 5-year follow-up study, CMV was
linked with faster cognitive decline and development of
AD [33], which supports two other reports that found
an association between CMV seropositivity and AD de-
velopment [34, 35]. Interestingly, Westman and col-
leagues observed that the peripheral blood mononuclear
cells (PBMCs) from CMV' AD patients were more
reactive after stimulation than non-infected patients,
suggesting that CMV is an inflammatory promoter in
AD [36].

Bacterial infections
A number of bacterial pathogens have also been associ-
ated with the development of AD. Chlamydia pneumonia
is an obligate intracellular, Gram-negative bacteria that
was first observed in the postmortem AD brain by Balin
and colleagues in 1998 [37], although the finding has been
replicated many times since [38, 39]. Infection with C.
pneumonia is associated with a fivefold increase in AD
development [40], and AD patients have increased levels
of C. pneumonia-specific antibodies in circulation in com-
parison with control subjects [34]. It is believed that the
bacteria can cross the blood-brain barrier (BBB) via the ol-
factory route or within infected monocytes [41]. Once in-
side the CNS, C. pneumonia can infect microglia,
astrocytes, and neurons. Importantly, Gérard and col-
leagues observed infected cells containing viable, metabol-
ically active pathogens in close proximity to AD-plaque
pathology [39]. Similar to HSV-1, AD patients with the
APOE4 allele are more susceptible to infection with C.
pneumonia as a significantly greater bacterial burden was
observed in regions such as the hippocampus in compari-
son to those without APOE4 [38]. C. pneumonia can
inhibit neuronal apoptosis in vitro, thus facilitating the
maintenance of a chronic infection [42]. Interestingly,
intranasal infection of mice with C. pneumonia induced
AP deposition in the brain, which co-localized with react-
ive glia [43], importantly C. pneumonia remains active in
the murine CNS for months after infection [44].
Heliobacter pylori is a Gram-negative bacteria that
grows in the digestive tract and was recently demonstrated
to have a significant association with the development of
dementia [45]. In older individuals, the presence of H.
pylori 1gG antibodies was associated with decreased cogni-
tive performance [46], indeed research has shown that AD
patients also have increased H. pylori seropositivity in the
serum and cerebrospinal fluid (CSF) [47]. Furthermore,
Kountouras and colleagues have demonstrated that indi-
viduals with AD had an increased incidence of H. pylori
infection of the gastric mucosa compared to controls [48].
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Within AD patients, those infected with H. pylori had
more severe dementia, characterized by lower MMSE
scores, with increased proinflammatory cytokines and tau
levels in the CSF [49]. A 20-year follow-up study also
found H. pylori to be a significant risk factor for the devel-
opment of dementia, although even at baseline those
positive for H. pylori had lower MMSE scores [50]. It
has been reported that elimination of H. pylori infec-
tion reduced the mortality rate of AD patients when
examined 5 years later [51]. Furthermore, AD patients
who were treated for their infection and remained H.
pylori-free for 2 years had improved cognition than
when they were first examined, while those who were
still positive for the bacterium had further declined
[52]. Animal studies have demonstrated that intraperi-
toneal injection of H. pylori filtrate into rats increased
the concentration of APy, in the cortex and hippo-
campus, which was associated with memory deficits
and impaired spatial learning [53]. This group also re-
ported that H. pylori filtrate significantly increased tau
phosphorylation in neuronal cultures in vitro and in the
rat hippocampus in vivo [54]. Conversely, infection of
C57BL/6 ] mice with H. pylori did not affect amyloid de-
position when assessed 18 months later [55], however the
effect of H. pylori on amyloid pathology in AD-transgenic
mice has yet to be examined.

Periodontitis is another a risk factor for AD and it has
been demonstrated that healthy elderly individuals with
periodontal disease have a higher accumulation of
amyloid in the CNS [56], with an association found
between elevated interleukin (IL)-6 and tumor necro-
sis factor (TNF)a in the circulation and periodontitis
in AD patients [57]. A common cause of periodontitis
is spirochete infection, which is a Gram-negative,
neurotropic bacterium. The periodontal spirochete
pathogen Treponema has been detected in the AD
brain, with co-infection of multiple Treponema spe-
cies observed in some patients [58]. Many other spe-
cies of periodontal pathogens have been found in the
AD brain including lipopolysaccharide (LPS) from P.
gingivalis [59] and Borrelia burgdorferi [58, 60, 61].
Importantly, B. burgdorferi co-localised with Ap
deposits in patients [61] and was found to induce A
deposition by glial and neuronal cells in vitro [62].
Indeed, it has recently been suggested that bacterial
amyloid, along with host-derived Af, are constituents
of the senile plaques observed in AD [63]. A number
of studies have found that significantly more AD
patients have a spirochete infection when examined
in the post-mortem brain, than controls [58, 60]. In
addition, AD patients have increased levels of B. burg-
dorferi-specific antibodies in circulation [34], and a
recent study demonstrated a tenfold increase in the
occurrence of AD with spirochete infection [40].

Page 3 of 7

Fungal infections

There have been a number of reports over the past
3 years on the contribution of fungal infections to the
progression of AD. In 2014, Alonso and colleagues first
demonstrated the presence of fungal proteins and DNA
in the AD brain [64]. Many different species were de-
tected including Saccharomyces cerevisiae, Malassezia
globosa, Malassezia restricta, and Penicillium. Analysis
of CSF samples from patients also revealed the presence
of S. cerevisiae, M. globose, and M. restricta DNA, while
the CSF levels of Candida albicans and C. glabrata
proteins were significantly greater in those with AD [65].
In both studies it was observed that many AD patients
were co-infected with a number of fungal species, while
no fungal DNA was detected in control samples. In line
with this finding, AD patients also have greater seroposi-
tivity to C. albicans and C. glabrata [66]. Immunohisto-
chemical analysis identified fungal material inside
neuronal cells in the postmortem AD brain, including
macromolecules from Candida glabrata, Penicillium
notatum, and C. albicans [67]. Furthermore, this group
have found fungal material both intra- and extra-
cellularly, and in many brain regions including the
frontal cortex, hippocampus, and the blood vessels of
the CNS, with mixed-fungal infections observed in mul-
tiple patients [27]. It has yet to be established whether
the fungal infection co-localises with AP or if the infec-
tion has a direct or indirect effect on amyloid produc-
tion in the CNS.

Interestingly, it has been suggested that A may also
function as an antimicrobial peptide (AMP). In vitro
studies have confirmed that AP has antimicrobial activity
against a range of pathogens and was as effective, or
even more potent, than LL-37 which is an established
human AMP [68]. Importantly, C. albicans was the
microbe most sensitive to synthetic AP, and brain
homogenates from AD patients, but not controls, were
also capable of inhibiting fungal growth. It was recently
demonstrated that AP protects against C. albicans infec-
tion in glial cells in vitro and in nematodes in vivo [69].
In addition, AP inhibits HSV-1 viral replication in vitro,
and protects mice from Salmonella Typhimurium
infection in vivo, which led the authors of both studies
to conclude that AR may have a previously unknown
protective role in innate immunity, along with the
pathogenic characteristics that are extremely well
studied [69, 70].

Why are the elderly more susceptible to these infections?
The emerging evidence strongly indicates that infection
has a significant role in the development of, and progres-
sion to, dementia, with a growing list of pathogens specif-
ically associated with AD or AP deposition. This may be
due in part to some of the changes that are known to
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occur to the immune system with age. One of the key
changes in the adaptive immune system is the involution
of the thymus, resulting in a dramatic decrease in the pro-
duction of new T cells [71]. With age, there is an overall
decrease in naive T cells, and a corresponding increase in
memory T cells [72]. This is associated with a reduction in
naive T cell diversity after the age of 65 [71], with clonally
expanded subsets of memory T cells often observed in this
age group, which can occur from chronic or repeat infec-
tions [4, 72]. Together, this can limit the capacity of the
individual to induce a sufficient immune response to new
infectious challenges. In adults, the remaining pool of
naive T cells is maintained via proliferation [73], however
over their life-span, these naive cells can be exposed to
stressors such as oxidative species or changes in the avail-
ability of cell-survival factors, which can affect their func-
tion [74].

Interestingly, many studies have demonstrated that
T cell activation is even further altered in AD. The popu-
lation of naive T cells is significantly decreased in AD pa-
tients, with an increase in memory T cells in comparison
with age-matched, healthy controls [75-77]. In addition, it
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has been reported that AD patients have T cells with
shorter telomeres, and telomere length significantly
correlated with AD severity [78]. AD patients have in-
creased T cell reactivity to AP [79, 80], and the
phenotype of the T cells in circulation is shifted, with
increased CD4'IFN-y* and CDS8'IFN-y* T cells ob-
served [81, 82]. Saresella and colleagues also reported
an Ap-specific population of Th17 and Th9 cells that
was increased in AD patients in comparison to
healthy control subjects [75].

These changes can have a critical impact on the CNS,
as activated T cells have been found in the CSF of AD
patients [83, 84] and these cells have been reported in
the human brain, with greater numbers reported in the
brains of AD patients [85, 86]. Importantly, T cells were
found in close association with microglia [86], which are
known to have an antigen-presenting phenotype in AD
[85, 87, 88]. Animal studies have demonstrated the pres-
ence of IFN-y" Thl cells and IL-17" Th17 cells in the
CNS of aged APP/PS1 mice [89, 90]. In addition,
respiratory infection can have a significant effect on the
phenotype of T cells in the CNS [90]. It was observed

-
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Fig. 1 The impact of infection on Alzheimer's disease pathology. Healthy aging is accompanied by increased blood-brain barrier (BBB)
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established that microglia produce a range of cytokines in response to the growing presence of AB, however, with the increased number of T
cells in the AD brain that have the capacity to interact with microglia, this can lead to elevated cytokine production. In addition, pathogens have
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confounded by inflammatory events occurring in the periphery, such as respiratory infection. This can result in increased immune cells and cytokines
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that peripheral infection increased the deposition of Af
in the brain, which was associated with increased T cell
infiltration and microglial activation in older, but not
younger, APP/PS1 mice.

It has also been reported that the innate immune sys-
tem undergoes changes with age and in AD. Monocytes
prepared from individuals with discrepant memory IQ
had increased expression of CD11b, Toll-like receptor
(TLR)2, and TLR4 [91]. Indeed the population of circu-
lating myeloid dendritic cells (DCs) is decreased in the
elderly [92] and these cells are further reduced in AD
[93]. AD patients had increased levels of ICAM-1"
monocyte-derived DCs [94] and increased expression of
MHC class II and CD16 on CD14" monocytes [95]. Sar-
esella and colleagues also found a significant increase in
IL-6- and IL-23-producing CD14* monocyte/macro-
phages in AD patients, while IL-10" cells were reduced
[75]. Furthermore, it was recently demonstrated that
circulating NLRP3"caspase 1" and NLRP3'caspase 8"
monocytes are increased in AD, and these cells pro-
duced significantly greater levels of IL-1p and IL-18 after
LPS and AP treatment [96]. This is in line with our pre-
vious work demonstrating an important role for the
NLRP3 and caspase-1 pathway in the progression of AD
pathology, both in AD patients and APP/PS1 mice [97].
Myeloid cells from memory-impaired individuals also
have a greater stimulus-induced proinflammatory re-
sponse [91], which mirrors animal studies demonstrating
the same effect in bone marrow-derived macrophages
from APP/PS1 mice [98]. However, it has been found
that DCs from AD patients have a reduced ability to
stimulate T cell proliferation [94]. The innate immune
system provides the first line of defense against infec-
tious agents, thus an altered response here can have
severe consequences for the individual and their abil-
ity to control, and respond to, infection. As peripheral
myeloid cells have been detected in the AD brain
[99], changes in the phenotype of these circulating
cells suggest that those which have infiltrated the
CNS are similarly altered.

Conclusion

It is clear from the evidence that AD patients are more
vulnerable to the effects of peripheral infection than
their age-matched, healthy counterparts. Importantly, it
is indisputable that many specific viral, bacterial, and
fungal infections are associated with AD development,
although whether these pathogens are a direct cause of
dementia or instead are advantageous, infiltrating micro-
organisms that exacerbate the neuroinflammation
already ongoing in these individuals remains to be
confirmed. Importantly, the BBB of AD patients is signifi-
cantly leakier than in healthy subjects, which facilitates
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infiltration of peripheral immune cells [100] and possibly
these infectious pathogens (Fig. 1). Together, this review
demonstrates the critical need for early detection and
treatment of infections in the elderly and in those with
dementia. As infectious diseases can present atypically in
this group, frequent screening and vaccination are key to
preventing infection-related deterioration of cognition
until new therapies are established that can protect the
elderly from these unnecessary insults.
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