
Background

Th ree decades of multidisciplinary research have 

resulted in detailed knowledge of the molecular patho-

genesis of Alzheimer disease (AD) [1]. We know that 

the symptoms of AD are caused by synaptic dysfunction 

and neuronal death in the areas of the brain that are 

involved in memory consolidation and other cognitive 

functions [1]. Th is neurodegeneration is fi rmly asso cia-

ted with aggre gation of the 40- to 42-amino acid 

amyloid beta (Aβ) peptide into senile plaques, phos-

phorylation and aggre ga tion of tau proteins that form 

neurofi brillary tangles, and microglial activation that 

may be a protective response or contribute to the 

neuronal dysfunction and damage [2]. Th e relative 

impor tance of these processes to the clinical presen-

tation of the disease remains uncertain.

Clinical trials of novel anti-AD drugs face at least two 

major challenges. First, the new types of drug candidates 

that attack basic disease processes are likely to be most 

eff ective in early stages of the disease, before neuronal 

degeneration has become too widespread and severe [3]. 

However, clinical methods that recognize early AD are 

lacking. Second, the drug candidates may slow down the 

degenerative process without having any immediate and 

easily recognizable symptomatic eff ect [4]. Th is makes 

evaluation of the drug eff ect diffi  cult. Th eragnostic bio-

markers (that is, biomarkers that detect and monitor 

biochemical eff ects of the drug) may help solve some of 

these problems. Here, we review three pathological 

processes that are thought to be involved in the complex 

surge of AD – namely the amyloid cascade, abnormal tau 

phosphorylation, and microglial activation with neuro-

infl ammation – and the currently available biomarkers 

thought to refl ect them (Figure 1).

Core biomarkers of Alzheimer disease

It is well established that cerebrospinal fl uid (CSF) levels of 

total tau (T-tau), phospho-tau (P-tau), and the 42-amino 

acid fragment of Aβ (Aβ42) refl ect core elements of the 

AD process [3]. T-tau is a marker of cortical axonal 

degeneration and disease activity [5-7]. P-tau refl ects 

neurofi brillary pathology [8,9]. Aβ42 is a marker of plaque 

pathology [9-12]. Together, these biomarkers identify AD 

and predict AD in mild cognitive impairment (MCI) with 

a sensitivity and specifi city of 75% to 95% [3]. Th e 

predictive power is, however, sub optimal in general 

populations as compared with MCI cohorts because of the 

lower prevalence of incipient AD in this group [13]. Plasma 

biomarkers refl ective of patho physiological changes in the 

AD brain are highly warran ted, the subject of intense 

research, but unfor tunately still lacking [3].

Drug targets

Amyloid

Experimental data, as well as longitudinal studies in 

humans, suggest that certain forms of Aβ may act as 

initiators in the disease process with potent toxic eff ects 

at the synaptic level [2]. Based on this knowledge, novel 

treat ments aimed at inhibiting Aβ toxicity have been 

developed and are being tested in patients [14]. Th ese 

include secretase inhibitors and modulators that aff ect 

the production of Aβ from amyloid precursor protein 

(APP), immunotherapy aimed at increasing the clearance 
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of Aβ from the brain, and Aβ aggregation inhibitors that 

should prevent pathological build-up of the peptide in 

the brain [14].

Tau

Among the typical brain lesions in AD are neurofi brillary 

tangles that consist of abnormally phosphorylated forms 

of the microtubule-stabilizing protein tau [15]. Tau 

expres sion is high in non-myelinated cortical axons, 

especially in the regions of the brain (such as the limbic 

cortex, including the hippocampus) which are involved in 

memory consolidation [16]. Hyperphosphorylation of tau 

causes the protein to detach from the microtubules and 

destabilizes the axons [17]. Th is process promotes axonal 

and synaptic plasticity in the developing brain [17] but 

may be pathological in the adult brain and specifi cally 

related to a group of disorders referred to as tauopathies; 

this group includes AD and some forms of fronto-

temporal dementia [15]. Inhibiting tau phos phory lation 

or aggregation has been considered a promising strategy 

to slow down the neurodegeneration in AD. Drug 

candidates intervening in tau-related disease pro cesses 

(for example, inhibitors of the tau kinase GSK3β and tau 

aggregation inhibitors) exist but are still in an early phase 

of development [14].

Microglial activation

Microglia are the resident immune cells of the central 

nervous system (CNS) [18] and are macrophages of 

myeloid lineage and invade the CNS during embryo-

genesis. Th ese innate immune cells perform the majority 

of the immunological surveillance in the CNS. However, in 

certain conditions such as multiple sclerosis or neuro-

borreliosis, infi ltration of T cells but also B cells into the 

CNS occurs. Microglia are usually in a resting state but at 

any time may become activated in response to infection or 

injury [18]. Th e key question of microglia in AD is whether 

the infl ammation mediated via micro glia is benefi cial or 

not. Th e capability of microglia to release reactive oxygen 

species, nitric oxide, interleukin-1-beta (IL-1β), and tumor 

necrosis factor-alpha (TNFα) is benefi cial in response to 

invading pathogens. However, these compounds are also 

neurotoxic and collateral damage to neurons is frequent 

during infections. Th e same may occur in AD because 

plaques function as immunological triggers for the 

activation and recruitment of microglia, which may result 

Figure 1. Summary of candidate theragnostic biomarkers that refl ect key drug targets in the Alzheimer disease (AD) process. Beta-

secretase inhibitors should reduce cerebrospinal fl uid (CSF) levels of amyloid beta (Aβ) isoforms starting at the fi rst amino acid in the Aβ sequence 

(Aβ1-X). Gamma-secretase inhibitors should reduce Aβ1-40 and Aβ1-42 and increase Aβ1-14, Aβ1-15, and Aβ1-16. Both Aβ immunotherapy and 

anti-aggregation agents might be monitored by CSF levels of Aβ1-40 and Aβ1-42. Therapy-induced Aβ degradation might be monitored by 

CSF levels of diff erent Aβ peptides, depending on the proteolytic pathway used for degradation. Aβ effl  ux from the brain to the blood might be 

monitored by measurement of Aβ in CSF and plasma. Infl ammatory markers in plasma and CSF as well as CSF levels of CCL2 and chitotriosidase 

activity are putative markers of microglial activity and may change in response to treatments that infl uence microglial activity. Treatment with 

tau hyperphosphorylation inhibitors might be monitored with CSF phospho-tau (P-tau) levels. Downstream eff ects on axonal degeneration from 

disease-modifying treatments could be monitored by using the axonal damage markers CSF total tau (T-tau) and neurofi lament light protein (NFL). 
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in neuron loss [19]. On the other hand, microglia have 

been shown to clear deposits of Aβ through the Toll-like 

receptor 4 (TLR4), and AD mice with a defective TLR4 

have increased deposits of Aβ [20].

Other drug targets

Besides the three targets mentioned above, several other 

approaches are aimed at improving neural transmission 

and memory consolidation in AD. Th ese include nerve 

growth factor gene therapy, stimulation of nicotinergic 

acetylcholine receptors by varenicline, protein kinase C 

activation by bryostatin 1, and many more [21]. 

Th eragnostic biomarkers for each of these drugs may be 

diff erent from those reviewed below and are specifi cally 

related to the mode of action of the drug.

Theragnostic biomarkers

General issues

Th eragnostic markers have accelerated the development 

of treatments in some types of cancer, HIV infection, 

atherosclerosis, and multiple sclerosis, and cancer-

specifi c fusion transcripts or mutations, viral load, 

plasma levels of low-density lipoprotein cholesterol, and 

brain MRI (magnetic resonance imaging) white matter 

lesion burden, respectively, have been used to ascertain 

that the drug candidate is benefi cial [22]. Th ese examples 

indicate that theragnostic markers may be useful in 

evaluating novel therapeutics also in AD. Furthermore, 

such studies may help to bridge the gap between animal 

studies that are poor at predicting treatment success in 

humans and large clinical trials [1]. Sometimes, these 

types of bio markers are referred to as surrogate markers 

of patho genic processes. However, the term surrogate 

marker often indicates a marker that is (i) a validated 

substitute for a clinically meaningful endpoint and (ii) 

expected to predict the eff ect of therapy [23,24]. Th is 

defi nition goes beyond a mere correlation between a 

laboratory measure  ment and a clinical outcome or a 

pathogenic process since a fully validated surrogate 

marker also requires proof that intervention on the 

surrogate marker predicts the eff ect on the clinical 

outcome [25]. If applied in full by regulatory authorities, 

very few biomarkers in medicine live up to these 

requirements, which may obstruct implementation of 

surrogate biomarkers in large-scale clinical trials. 

However, this circumstance does not hinder the use of 

non-validated surrogate markers when deciding upon the 

most promising drug candidates in early stages of drug 

development. Rather, this approach is advocated by the 

US Food and Drug Administration [26].

Are they useful?

To date, only preliminary reports suggest that CSF bio-

markers may be useful in detecting and monitoring 

biochemical eff ects of novel drugs against AD. With 

regard to biomarkers for amyloid pathology, the many 

factors that infl uence steady-state levels of Aβ in CSF 

(production, aggregation, enzymatic clearance, and bi-

directional transport across the blood-brain barrier) 

make it diffi  cult to predict what diff erent amyloid-

targeting treatment paradigms might do to CSF Aβ 

concen trations. In fact, any treatment-induced change to 

an amyloid-related biomarker which is informative with 

respect to clinical outcome would be a major step forward. 

So far, data from animal studies show that γ-secretase 

inhibitor treatment results in a reduction in cortical, CSF, 

and plasma levels of Aβ [27,28]. Similarly, treatment of 

monkeys with a BACE1 inhibitor reduced the CSF levels of 

Aβ42, Aβ40, and β-sAPP [29]. Other promising 

biomarkers that are closely linked to the amyloidogenic 

process in AD are CSF BACE1 (the major β-secretase) 

concentration and activity, CSF levels of α- and β-cleaved 

soluble APP, and Aβ oligomers [30-32]. Th ese biomarkers 

appear to provide information of limited diagnostic 

usefulness but may turn out to be important for identifying 

treatment eff ects of drugs that are meant to inhibit β-

secretase or break up amyloid aggregates.

In patients with AD, it is uncertain how CSF Aβ42 may 

respond to treatment with effi  cacious anti-Aβ drugs. A 

phase IIa study of the Aβ clearance-enhancing compound 

PBT2 showed a signifi cant dose-dependent reduction in 

CSF Aβ42 levels during treatment [33]. Data from a clinical 

study on the amyloid-targeting drug phenserine also 

showed changes in CSF Aβ levels in response to treatment 

[34]. However, in the interrupted phase IIa AN1792 trial of 

active immunization against Aβ, no signifi cant treatment 

eff ect on CSF Aβ42 was found [35]. A clinical study on γ-

secretase inhibitor treatment also failed to detect any eff ect 

on CSF Aβ42 levels [36]. Nevertheless, when the eff ect of 

this drug on Aβ produc tion rate by the use of a stable 

isotope-labeling kinetic tech nique was evaluated, a clear 

inhibitory eff ect of γ-secretase inhibition on Aβ production 

was identifi ed [37]. Recent data show that shorter Aβ 

peptides in CSF – namely Aβ1-14, Aβ1-15, and Aβ1-16 – 

represent a novel APP-processing pathway [38] that is 

upregulated in a dose-dependent manner in response to γ-

secretase inhibition [39].

Given longitudinal studies of conditions involving 

acute neuronal injury [40] and data from the interrupted 

phase IIa AN1792 trial [35], T-tau should decrease 

toward normal levels if a treatment is successful in inhi-

bit ing the neurodegenerative process in AD. Th e same 

may be expected for P-tau, as suggested by two recent 

pilot studies on memantine [41,42].

Currently, there are no established CSF biomarkers for 

microglial activation which could be used as theragnostic 

markers in trials aimed at inhibiting, boosting, or modu-

lating microglial activity in AD. Chemokine (C-C motif ) 
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ligand 2 (CCL2) (also called monocyte chemoattractant 

protein-1, or MCP-1) and chitotriosidase are fi rmly 

associated with macrophage activation in the periphery 

[43,44] and may be considered promising markers of 

microglial activation in the CNS, but studies in relation 

to AD are scarce [45]. However, several biomarkers for 

general infl ammation exist. Pilot studies showed 

increased CSF levels of transforming growth factor-beta 

(TGFβ) in AD as compared with controls [46,47]; this 

result was recently confi rmed in a meta-analysis of 

cytokines in AD [48]. Other classical markers such as 

IL-1β, IL-6, and TNFα were not altered in the CSF of 

patients with AD. Th e plasma levels of several cytokines 

such as IL-1β, IL-6, IL-12, IL-18, TNFα, and TGFβ – but 

not IL-4, IL-8, IL-10, interferon-γ, or C-reactive protein – 

were increased in AD. Together, these data argue for an 

infl ammatory component in AD. However, the results of 

anti-infl ammatory therapy in AD have been contra-

dictory [49]. As explained above, the link between 

infl am m ation and other core disease processes in AD 

remains elusive.

Concluding remarks

Th eoretical reasoning suggests that theragnostic bio-

markers could play a major role in drug development 

against AD, but, admittedly, the body of literature 

supporting this view is limited at present. We know quite 

a lot about central pathogenic features of the disease, and 

several biomarkers that monitor these features exist. A 

number of phase 0-I clinical trials indicating small but 

statistically signifi cant eff ects on theragnostic biomarkers, 

mostly in relation to axonal integrity and amyloid 

pathology, have been published. Interpreting these 

biomarker results is, however, complicated by the fact 

that none of the studies was designed to detect clinical 

eff ects. Th is circumstance precludes analyses of whether 

the patients with biomarker changes imposed by the 

treatment were those with the clearest clinical benefi t.

Th e recent interruption of the phase III trials 

(IDENTITY [Interrupting Alzheimer’s Dementia by 

Evalu ating Treatment of Amyloid Pathology] and 

IDENTITY-2) of the γ-secretase inhibitor semagacestat 

(LY450139) (Eli Lilly and Company, Indianapolis, IN, 

USA) may be considered a blow to the fi eld of 

theragnostic biomarkers. Despite compelling evidence in 

cell and animal models, as well as plasma Aβ data [36] 

and Aβ turnover rates [37] in humans, suggesting that 

the compound reduces Aβ production, cognition 

declined faster in the treatment arms compared with 

placebo. In our view, these data should spur us to 

continue developing more biomarkers for APP- and Aβ-

processing for other desired drug eff ects such as 

improvement of neural transmission as well as for 

undesired eff ects (for example, inhibition of Notch 

signaling). For another recently failed trial (tarenfl urbil, 

which is supposed to act as a γ-secretase modulator), 

there were plenty of bio marker data suggesting that the 

drug did not hit its target in the human brain [50]. Th ese 

data could have curbed the enthusiasm to move to phase 

III and thus saved a lot of money.

Several other clinical trials on disease-modifying drug 

candidates which include biomarkers as readouts are 

currently ongoing. Th ese trials will provide more 

evidence on whether biomarkers will be useful as tools to 

select the most promising drug candidates for phase II/

III trials for AD.
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