
Introduction

Alzheimer’s disease (AD) is the most common age-

related neurodegenerative disorder, currently aff ecting 20 

to 30  million individuals worldwide [1]. Th e cardinal 

symptom of the disease is progressive memory loss due 

to the degeneration of neurons and synapses in the 

cerebral cortex and subcortical regions of the brain. 

Comprehensive evidence supports the amyloid hypo the-

sis of AD, which argues that accumulation and aggre-

gation of amyloid-β (Aβ) peptides in the brain is causal in 

its pathogenesis. Aβ is a proteolytic fragment generated 

through sequential cleavage of the amyloid precursor 

protein (APP) by β-secretase (BACE1) and γ-secretase. 

Cells produce Aβ peptides of variable length. A peptide 

of 40 amino acids (Aβ40) is the most prevalent species 

secreted by cells, whereas the longer Aβ42 isoform 

appears to be the key pathogenic species and the most 

abundant species deposited in the brain. Major support 

for the amyloid hypothesis is drawn from cases of early-

onset familial AD (FAD). As used in this review, the term 

FAD is confi ned to familial cases with an autosomal-

dominant inheritance pattern. Missense mutations that 

are causative of FAD have been identifi ed in three genes 

that are essential for the generation of Aβ peptides: the 

APP gene and two homologous genes that encode the 

catalytic subunit of γ-secretase, PSEN1 (encoding 

presenilin-1) and PSEN2 (encoding presenilin-2) [2,3]. 

Overall, the clinical presentation of FAD patients with 

APP and PSEN mutations is very similar to that of 

sporadic AD, which is supported by neuroimaging, bio-

marker and post-mortem neuropathology studies. Recently, 

the clinical fi ndings in FAD mutation carriers have been 

summarized in an excellent review by Bateman and 

colleagues [4] and will not be further discussed here.

Discovery of amyloid precursor protein mutations

It is undisputable that since the fi rst description of the 

pathology of AD by the German psychiatrist and neuro-

pathologist Alois Alzheimer in 1906 to the early days of 

the amyloid cascade hypothesis, both modern bio chem-

istry and genetics have played major roles in advancing 
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our understanding of this neurodegenerative condition. 

With the knowledge of the Aβ peptide sequence obtained 

from purifi ed fractions of either vascular amyloid or 

senile plaques from AD and Down’s syndrome patients, 

the identifi cation of APP was a logical step forward [5-7]. 

Since the Aβ peptide represents only a small fragment of 

APP including part of the transmembrane domain, it was 

apparent that its de novo generation required at least two 

proteolytic activities (Figure 1a). Particularly troublesome 

at the time was the second processing step in the trans-

mem brane domain (TMD) since intramembrane-

cleaving proteases were only discovered more than a 

decade later. Nevertheless, with the sequencing of the Aβ 

peptide and the cloning of APP a lively scientifi c debate 

had begun on their causative association with AD. In 

addition to Aβ being the major constituent of two of the 

three hallmarks of AD - senile plaques and vascular 

amyloid - the chromo somal location of APP also strongly 

argued in favor of a crucial role for it. Th e APP gene is 

located on chromosome 21, which had been linked to AD 

by multiple genetic linkage studies and the observation 

that Down’s syndrome patients develop dementia accom-

panied by prototypical neuropathological hallmarks of 

AD [8,9]. Th ree years after the cloning of APP, the E693Q 

Dutch missense mutation in the mid-region of Aβ (E22Q 

when referring to the Aβ peptide sequence) was identi-

fi ed as being causative of hereditary cerebral hemorrhage 

with amyloidosis Dutch-type (HCHWA-D) (Figure  1b) 

[10]. Although the neuropathology of HCHWA-D is 

clearly distinct from that of AD, this milestone discovery 

provided the fi rst evidence that the APP gene harbors 

autosomal-dominant mutations causing dementia. 

HCHWA-D itself is characterized by severe vascular 

amyloid deposition, termed cerebrovascular amyloid 

angio pathy (CAA), in addition to parenchymal plaques. 

CAA as a result of targeting Aβ deposition to blood 

vessels ultimately leads to cerebral hemorrhages and 

strokes. One year later, the AD community received the 

long awaited news regarding the discovery of several 

causative FAD mutations in APP. Th ese were located at 

the V717 position and included the London (V717I) [11], 

Indiana (V717F) [12] and V717G [13] mutations. Th ese 

major discoveries spurred the identifi cation of a continu-

ous stream of additional CAA and FAD mutations to the 

present time (highlighted in Figure 1b and Table 1). Th e 

detailed investigation of their biological phenotypes 

relied, to a large extent, on progress in the understanding 

of the physiological metabolism of APP and further 

advancements in assay technologies, such as highly 

sensitive immunoassays capable of discriminating Aβ40 

and Aβ42 peptides. In this respect, the observation that 

Aβ peptide secretion is the result of a physiological 

process not only pointed towards the existence of cellular 

proteases capable of APP processing but also provided an 

in vitro system for studying mutant APP variants in detail 

[14].

Amyloid precursor mutations causative of 

cerebrovascular amyloid angiopathy

When comparing the APP FAD and CAA mutations it is 

evident that these cluster around hot spots in the APP 

protein sequence (Figure 1a). Th e mutations causative of 

CAA are located in the central region of the peptide. At 

the molecular level, these mutations change the charge 

distribution and thereby likely aff ect the peptide 

structure, ultimately promoting fi bril formation [15,16]. 

Most data to date have been generated for the E22Q 

(E693Q) Dutch peptide. Limited proteolysis and NMR 

has identifi ed a turn in the V24-K28 region, which 

appears to be critical for folding of the monomer and is 

stabilized, in part, by electrostatic interactions between 

Table 1. Primary references of amyloid precursor protein 

mutations

  Common Publication
Mutationa Phenotype name date Reference

KM670/671NL AD Swedish 1992 [38]

A673V AD (recessive)  2009 [105]

H677R AD  2003 [106]

D678N AD  2004 [107]

A692G CAAb Flemish 1992 [108]

E693Q HCHWA-Db Dutch 1990 [10]

E693G AD Arctic 2001 [26]

E693K CAA Italian 2010 [109]

E693Δ AD Osaka 2008 [27]

D694N AD and CAA Iowa 2001 [110]

A713T AD and CAA  2004 [111]

T714I AD Austrian 2000 [112]

T714A AD Iranian 2002 [113]

V715M AD French 1999 [114]

V715A AD German 2001 [115]

I716V AD Florida 1997 [116]

I716F AD  2010 [117]

V717I AD London 1991 [11]

V717F AD Indiana 1991 [12]

V717G AD  1991 [13]

V717L AD  2000 [118]

T719P AD  2009 [119]

L723P AD Australian 2000 [120]

K724N Likely AD  2006 [121]

aNumbering according to the position in the APP 770 isoform. bCAA, cerebral 
amyloid angiophathy; HCHWA-D, hereditary cerebral hemorrhage with 
amyloidosis Dutch-type (for a continuously updated list of APP mutations, see 
[55]). AD, Alzheimer’s disease; APP, amyloid precursor protein.
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E22 and K28. E22 and D23 mutations destabilize this 

turn and thereby promote oligomer formation [17,18]. 

Accordingly, in biological systems, increased toxicity in 

human leptomeningeal smooth muscle cells and en-

hanced neurotoxicity have been reported for the Dutch 

peptide [19,20]. Th is peptide also appears to be less 

effi  ciently degraded by the prototypical Aβ-degrading 

enzyme insulin-degrading enzyme [21]. Transgenic 

animal models expressing Dutch APP recapitulate the 

human pathology, with the vasculature being the main 

site of amyloid deposition [22]. With respect to Aβ 

production itself, no coherent phenotype has been 

observed for the CAA mutants. Th e A692G Flemish 

mutation enhances Aβ40 and Aβ42 production whereas 

the Dutch mutation does not appear to aff ect Aβ 

production at all [23]. Th e enhanced Aβ production of 

the Flemish mutation was reported in 1994 [24]. Many 

years later, a systematic analysis of the domain surround-

ing A692 has identifi ed a substrate inhibitory domain 

(ASID) in APP [25]. Th is domain appears to exert a 

negative control over the activity of γ-secretase. Intriguingly, 

only the A692G amino acid exchange introduced by the 

Flemish mutation, but none of the other CAA/FAD-

associated mutations in the ASID domain, lowered its 

inhibitory potency, thus raising Aβ production [25]. Th is 

adds another facet to the mechanistic understanding of 

the Flemish CAA mutation. It is reasonable to assume, 

however, that the main driver for the CAA pathology is 

the change of the Aβ peptide sequence itself, since 

increasing total Aβ production will lead to FAD and not 

CAA, as shown for the APP Swedish mutation (see 

below).

It is important to note that not all mutations in the 

central region of Aβ cause CAA, as highlighted by the 

E693G Arctic and the E693Δ FAD mutations [26,27]. 

Despite changing the sequence at exactly the same posi-

tion aff ected by the Dutch and Italian CAA mutations, 

the Arctic mutation causes FAD characterized by the 

abundance of parenchymal plaques. However, these 

deposits are mainly ring-like in shape and devoid of a 

Figure 1. Amyloid precursor protein (APP) mutations. (a) The APP transmembrane domain (TMD) extends from the glycine in position 700 

to the lysine in position 723. The Aβ42 peptide isoform is highlighted in yellow. Depicted by arrows are the β-secretase (BACE1) cleavage site, the 

γ-secretase cleavage sites generating Aβ40 and Aβ42, and the ε-cleavage sites. According to the sequential cleavage model, ε-cleavage is the 

initiating event for the stepwise generation of Aβ peptides, which proceeds from the ε-site to the γ-cleavage sites and refl ects the periodicity of 

the APP TMD α-helix. Amino acid exchanges causative of either familial Alzheimer’s disease (FAD) or cerebral amyloid angiopathy (CAA) are shown 

below the peptide sequence. (b) Timeline of the discovery of APP mutations (see also [55]).
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dense core [28]. In good agreement with the human 

pathology, transgenic mouse models overexpressing 

Artic APP show fast and extensive parenchymal plaque 

formation and lack the profound vascular pathology 

observed in Dutch APP-overexpressing mice [29]. 

Confl icting data have been published for the APP E693Δ 

FAD mutation. Th is mutation was initially reported to 

promote the formation of toxic oligomers, and APP 

E693Δ transgenic mice lack extensive amyloid deposition 

[27,30]. In contrast, more recent biophysical studies have 

shown that the mutant peptide forms amyloid fi brils 

extremely rapidly [31-33].

Taken together, this leaves some important questions 

unanswered, such as why CAA mutations specifi cally 

target Aβ deposition to the brain capillaries. One 

common hypothesis is that the aggregation kinetics of 

the CAA peptides reduce their clearance across the 

blood-brain barrier [22]. A major contributor could be 

the specifi c cellular environment in the vasculature since 

smooth muscle cell surfaces in particular have been 

shown to promote CAA Aβ aggregation [34].

Amyloid precursor protein mutations causative of 

familial Alzheimer’s disease

In retrospect it is not surprising that almost all APP 

mutations causative of FAD cluster around the sites of 

proteolytic processing by the β-secretase and γ-secretase 

enzymes, releasing the Aβ peptides into the luminal/

extracellular compartment. A seminal observation came 

from the analysis of the KM670/671NL Swedish APP 

mutation, which reproducibly increased total Aβ secre-

tion in both Swedish APP transfected cells and skin 

fi broblasts from carriers of the mutation [35-38]. Mech-

an istically, this mutant is well understood, convert ing the 

APP sequence into a better substrate for BACE1, which 

became apparent after the enzyme had been cloned 

[39,40]. Th is increase in substrate affi  nity not only raises 

Aβ production but also infl uences the cellular compart-

ment where the cleavage takes place. Whereas BACE1 

processing of wild-type (WT) APP requires traffi  cking to 

the cell surface and recycling into early endosomes [41], 

evidence from non-neuronal cell lines suggests that 

Swedish APP may already be processed in the trans-

Golgi network compartment [42]. Both of these unique 

features of Swedish APP have therapeutic impli cations. 

Since all BACE1 inhibitors currently entering clinical 

development target the active site, these can be presumed 

to be competitive with the substrate. Th is has conse-

quences for their pharmacology and compound affi  nities 

are reduced in Swedish APP-expressing systems [43]. 

Conse quently, BACE1 inhibitor drugs could be less 

effi  cient at inhibiting BACE1 in Swedish APP mutation 

carriers. In addition, if antibodies inhibiting BACE1 were 

to be moved into the clinic, it is unlikely that these would 

reach the early intracellular compartments where Swedish 

APP is cleaved. Th is was supported by a recent study 

demon strating that, in contrast to the situation in WT 

animals, BACE1 antibodies were incapable of inhi bit ing 

the enzyme in a Swedish APP transgenic mouse model 

[44].

Th e remaining FAD mutations tend to accumulate 

distal to the γ-secretase cleavage site. Mechanistically, 

most of them elevate the Aβ42/Aβ40 ratio (Table 2), with 

the most robust data being obtained for the V717 FAD 

mutants [45-47]. Th is strongly supported a causative role 

of the longer Aβ42 peptide, which in animal models 

appeared to be essential for senile plaque formation [48]. 

However, the discovery of the ε-cleavage [49], which 

leads to the release of the APP intracellular domain 

(AICD), suggested that aberrant APP/AICD signaling 

might provide an alternative explanation of how APP 

FAD mutations cause AD. Th e ε-cleavage is homologous 

to the S3 cleavage in the Notch receptor and occurs in 

proximity to the cytosolic face of the membrane. It is also 

mediated by γ-secretase and liberates an intracellular 

domain capable of recruiting accessory proteins, which 

in turn could modulate nuclear gene expression [2]. 

When AICD generation from FAD mutants was quanti-

fi ed, confl icting data were obtained depending on the 

assay used (Table 2). Using a luciferase reporter assay in 

cells essentially refl ecting AICD detachment from the 

membrane and translocation to the nucleus, several APP 

FAD mutants did not show any diff erences compared to 

the WT APP [45]. When AICD generation in membranes 

was quantifi ed by western blot immunodetection, some 

mutations (for example, T714I) showed reduced and 

some increased (for example, I716V) AICD production, 

whereas all FAD mutants increased the Aβ42/Aβ40 ratio 

[46]. Overall, despite some experimental diff erences, no 

coherent pattern has been reported for AICD generation 

and APP mutations. It is not likely, therefore, that 

disturbed APP/AICD signaling contributes to FAD.

Th e key question of how exactly these FAD mutations 

promote the elevation of the Aβ42/Aβ40 ratio still 

remains unresolved. Th e answer may lie in the way 

γ-secretase cleaves its substrates. γ-Secretase cleaves at 

multiple sites within the APP TMD, and various Aβ 

peptide species have been identifi ed in cell supernatants 

(Aβ33, 34, 37, 38, 39, 40, 42, 43) and cell lysates (Aβ45, 

46, 48, 49). Recent data suggest a stepwise mode of 

cleavage with initiation at the ε-cleavage site [2,50]. Th is 

initial processing event is followed by successive tri-

peptide generation, which proceeds from the ε-cleavage 

site to the γ-cleavage sites and refl ects the periodicity of 

the α-helix. According to this model, the initiation site 

for Aβ42 and Aβ40 would be at positions 48 (APP T719) 

and 49 (APP L720), respectively, in the Aβ domain. An 

increase in the effi  ciency to initiate the Aβ42 lineage of 
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peptides at T719 or in turn a decrease at initiating the 

Aβ40 lineage at L720 would lead to an elevation of the 

Aβ42/Aβ40 ratio. In this respect, the region comprising 

residues T714 to V717 must harbor critical structural 

determinants governing enzyme binding and positioning 

for lineage initiation [51]. Mechanistically, one could 

view these mutations as quasi loss-of-function variants. 

If the enzyme had evolved to effi  ciently convert the APP 

substrate into Aβ40, any mutation forcing the enzyme 

towards the less effi  cient Aβ42 lineage would fi t this 

defi nition.

Presenilin mutations

Th e vast majority of FAD cases harbor heterozygous 

mutations in the PSEN1 gene on chromosome 14. 

Sherrington and colleagues [52] identifi ed the fi rst muta-

tions in PSEN1 in 1995. In the same year, mutations in 

the homologous gene PSEN2, on chromosome 1, were 

described [53,54]. Since then, more than 180 diff erent 

pathogenic mutations in more than 400 families have 

been identifi ed in PSEN1 and an additional 13 mutations 

in PSEN2 (see the Alzheimer Disease and Frontotemporal 

Dementia Mutation Database [55,56] for a complete list 

of mutations). Individuals with PSEN1 mutations 

typically become symptomatic between the ages of 30 

and 50 years.

γ-Secretase-dependent and -independent 

functions of presenilin proteins

PSEN proteins have been proposed to exert both 

γ-secretase-dependent and -independent functions. 

While it is far beyond the scope of this review to discuss 

all known physiological functions of PSEN proteins, we 

will briefl y summarize PSEN activities that might be 

impaired by FAD mutations.

PSEN proteins form the catalytic core of γ-secretase, a 

multi-subunit aspartyl protease that catalyzes the last 

step in the generation of the Aβ peptides from its 

substrate APP [2]. PSEN proteins have a nine TMD 

topology, and two critical aspartate residues in TMD6 

and TMD7 form the active center of γ-secretase. PSEN 

proteins are incorporated together with three accessory 

proteins, nicastrin, APH-1 (anterior pharynx defective-1), 

and PEN-2 (presenilin enhancer-2), into high molecular 

weight complexes. In addition to APP, more than 90 

type-I transmembrane proteins have been identifi ed as 

substrates of γ-secretase. Th e most prominent substrate 

aside from APP is the NOTCH receptor. Processing of 

Table 2. Phenotypes of common amyloid precursor protein mutations

APP mutation Aβ generation AICD generation AICD/ε-cleavage quantifi cation Reference

KM670/671NL (Swedish) Total Aβ  in transfected cells 

(6- to 8-fold) and human FAD 

fi broblasts (3-fold)

ND ND [35-37]

Various 717 Aβ42  (1.5- to 1.9-fold) ND ND [47]

T714I, V715M, I716F, V717I, 

V717F, V717G 

Aβ42/40  for V717I, others ND AICD  C99 luciferase reporter [45]

T714I, V715M, I716V, V717I, 

V717L, L723P

All mutants Aβ42/Aβ40  T714I: AICD 
L723P: AICD 
V715M: AICD 
I716V: AICD 
V717I : AICD 
V717L: AICD 

Immunodetection of AICD after in vitro 

generation in membranes (APP Swedish 

combined with second mutant)

[46]

T714I Aβ42/Aβ40  (11-fold) ND ND [113]

V715F Aβ40 and Aβ42 
Aβ38 

AICD  Immunodetection of AICD after in vitro 

generation in membranes

[123]

E693Q Dutch Aβ  ND ND [23]

A692G Flemish Aβ40 and Aβ42  ND ND [23,24]

E693G Arctic Aβ42  ND ND [26]

A673V (recessive) Aβ40 and Aβ42 
Aggregation and fi bril formation  

in homozygous carriers, but anti-

amyloidogenic in heterozygous

ND ND [105]

Note that immunoassays discriminating Aβ40 and Aβ42 became available in 1994 [46] and any prior data are based on immunoprecipitation of 35S-methionine 
labeled total Aβ. ε-Cleavage leading to AICD formation was discovered in 2001 [48]. Up arrows indicate increase; down arrows indicate decrease; right-pointing arrows 
indicate no change compared to WT APP. Aβ, amyloid-β; AICD, amyloid precursor protein intracellular domain; APP, amyloid precursor protein; ND not determined.
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NOTCH by γ-secretase liberates the NOTCH intra-

cellular domain (NICD), which translocates into the 

nucleus and regulates transcription of target genes in-

volved in cell fate decisions during embryogenesis and 

adulthood. Abrogation of NOTCH receptor processing 

and signaling causes dramatic phenotypes in a variety of 

organisms [2]. Another example is the proteolytic pro-

cess ing of the transmembrane receptors ErbB4 and DCC 

(deleted in colorectal cancer) by γ-secretase, which 

appears to be required for important neurodevelopmental 

processes such as axon guidance and astrogenesis [57,58]. 

However, the physiological signifi cance of γ-secretase-

mediated cleavage events in most of the other substrates 

remains to be clarifi ed.

PSEN proteins may also have important γ-secretase-

independent functions. Th ese include the modulation of 

specifi c signal transduction pathways, a critical function 

in lysosomal proteolysis and autophagy, and the regu-

lation of the cellular calcium homeostasis [2,59-62].

Current models of FAD-associated presenilin 

mutations

It is generally accepted that the eff ects of APP mutations 

on Aβ generation and aggregation can be accurately 

modeled by overexpression of mutant APP in cultured 

cells or transgenic mice; however, this is less evident for 

PSEN mutations. Overexpression of PSEN does not 

increase γ-secretase activity or production of Aβ peptides 

by itself. Instead, ectopic expression of PSEN leads to 

incorporation of exogenous PSEN molecules into the 

complex in exchange for endogenously expressed PSEN 

[63]. Th is replacement phenomenon demonstrates that 

the active γ-secretase complex contains all four subunits 

in a defi nite stoichiometry, and that the abundance of the 

accessory proteins is limiting for the formation of mature 

and enzymatically active complexes [2]. In most studies, 

FAD PSEN mutants have been stably overexpressed in 

permanent cell lines or transgenic mice, leading to 

replace ment of endogenous WT PSEN1 and PSEN2 

proteins in cellular γ-secretase complexes [63]. Alterna-

tively, PSEN mutants were expressed in PSEN1/PSEN2-/- 

double-knockout cell lines that do not harbor endoge-

nous WT PSEN proteins [64,65]. Accordingly, it is 

expected that functional γ-secretase complexes in both of 

these tissue culture models contain predominantly or 

solely the exogenously expressed PSEN mutants 

(Figure  2). However, this situation is strikingly diff erent 

from FAD patients with heterozygous PSEN1 (or PSEN2) 

mutations who express mutant and WT PSEN1 (or 

PSEN2) in an approximately equal ratio in the back-

ground of two WT PSEN2 (or PSEN1) alleles (Figure 2). 

In addition, a small number of knock-in mouse strains for 

FAD PSEN1 mutations have been created, in which the 

mutant alleles are expressed under control of the 

endo ge nous mouse PSEN1 promoter, and few studies 

have investigated the impact of the mutant alleles on Aβ 

production, processing of other γ-secretase substrates, 

and γ-secretase-independent functions of PSEN [66-69]. 

Finally, some studies have used primary cells from FAD 

patients to confi rm proposed eff ects of PSEN mutants 

[70]. Nevertheless, it follows that the vast majority of 

investi gations have been conducted in model systems 

that seem appropriate to assess the eff ects of isolated 

mutant alleles but that do not accurately refl ect the genetic 

background in FAD patients with PSEN mutations.

Presenilin mutations: loss-of-function, gain-of-

function, or both?

A vigorous debate has been initiated over the issue of 

whether FAD PSEN alleles represent loss-of-function or 

gain-of-function mutations. Th e arguments in this debate 

range from the proposition that alterations in the Aβ42/

Aβ40 ratio are the only meaningful outcome of PSEN 

mutations to the hypothesis that AD is unrelated to 

changes in Aβ production and is primarily caused by a 

loss of various PSEN protein functions [71-73]. γ-Secretase-

dependent phenotypes of specifi c PSEN mutations that 

have been investigated in multiple independent studies 

or model systems are summarized in Table 3.

Initially, measurements of steady-state Aβ levels in 

transfected cells, transgenic mice and primary cells of 

FAD patients with PSEN1 or PSEN2 mutations suggested 

that the common pathogenic mechanism of PSEN muta-

tions was to selectively elevate the absolute amount of 

cellular Aβ42 production, which was interpreted as a 

gain-of-toxic function mechanism [70,74]. However, 

subsequent experiments have demonstrated that many 

FAD PSEN mutations when overexpressed display reduced 

overall γ-secretase activity compared to WT PSEN 

proteins. Th is was fi rst recognized by Song and colleagues, 

who showed that overexpression of the PSEN1 mutations 

C410Y and G384A in PSEN1-/- knockout cells resulted 

in reduced NICD production [75]. Th ese fi ndings corre-

lated closely with results from in vivo experiments in 

PSEN-defi cient Caenorhabditis elegans and Drosophila 

that reported a complete rescue of NOTCH phenotypes 

after transgenic expression of human WT PSEN1 but 

only partial rescue with FAD PSEN1 mutants [76,77].

Since then several studies have confi rmed that many 

PSEN1/PSEN2 mutations cause reduced NOTCH 

cleavage, decreased formation of the AICD fragment, 

and reduced processing of other γ-secretase substrates 

such as N-cadherin [64,65,78-81]. Studies have further 

shown that elevations in the Aβ42/Aβ40 ratio after 

expression of some PSEN mutations are, to a large 

degree, due to reduced Aβ40 levels and not to increases 

in the absolute amounts of Aβ42 peptides [64,65,69,80, 

82-84]. In the majority of these studies, PSEN mutations 

Weggen and Beher Alzheimer’s Research & Therapy 2012, 4:9 
http://alzres.com/content/4/2/9

Page 6 of 14



were stably or transiently overexpressed in either perma-

nent cell lines with endogenous PSEN expression or in 

fi broblasts derived from PSEN1/PSEN2-/- knockout mice, 

and steady-state levels of Aβ peptides and γ-secretase 

cleavage product were measured in cell culture 

supernatants or lysates. With regard to Aβ, these steady-

state measurements represent the net eff ect of production, 

degradation, secretion and cellular uptake. In addition, 

kinetic studies of PSEN mutants have been performed in 

cell-free assays, which use solubilized membrane 

preparations from cells expressing PSEN mutants and 

employ exogenously added recombinant APP carboxy-

terminal fragments (CTFs) as substrates. Th ese assays have 

confi rmed that the rate of production of Aβ peptides and 

the AICD domain over time is reduced for some PSEN 

mutants compared to WT PSEN [69,82-84]. Th e one 

consistent feature of PSEN mutations in all of these studies 

is that they increase the Aβ42/Aβ40 ratio. For the well-

studied PSEN mutations listed in Table  2, this change in 

the Aβ42/Aβ40 ratio can be due to an increase in Aβ42 

levels with unchanged Aβ40 (PSEN1-M146L), increased 

Aβ42 with decreased Aβ40 (PSEN2-N141I), unchanged 

Aβ42 with decreased Aβ40 (PSEN1-I213T), or a decrease 

in both Aβ42 and Aβ40 (PSEN1-C410Y). In addition, the 

mutants impair AICD and NICD generation and 

processing of other γ-secretase substrates like N-

cadherin to variable degrees. PSEN mutants that lower 

Aβ40 levels, such as PSEN1-L166P and PSEN2-N141I, 

tend to impair AICD and NICD generation, indicating a 

more severe loss of γ-secretase enzyme activity. In 

contrast, mutants that preserve Aβ40 levels, such as 

PSEN1-M146L and PSEN1-A246E, also appear to preserve 

AICD and NICD levels, which is refl ected in the ability of 

the PSEN1-A246E mutation to fully rescue the lethal 

phenotype of PSEN1-/- knockout mice [85,86]. Overall, 

results from cell-based models with over expression of 

PSEN mutants and of kinetic studies in cell-free assays 

have been reasonably consistent in demonstrating a 

gradual loss of γ-secretase activity with the eff ect size 

depending on the specifi c PSEN mutation (Table 3). How 

can an overall decrease in γ-secretase activity caused by 

PSEN mutations explain the observed increase in the 

Aβ42/Aβ40 ratio? According to the sequential cleavage 

model of Aβ generation, γ-secretase cleavage takes place 

Figure 2. Tissue culture models of presenilin (PSEN) mutations. In most studies, PSEN mutants have been stably overexpressed either 

in permanent cells lines (left) or in PSEN1/PSEN2-/- double-knockout cell lines (middle). Due to the replacement phenomenon or the lack of 

endogenous wild type (WT) PSEN proteins, functional γ-secretase complexes in both of these tissue culture models contain predominantly or 

solely the exogenously expressed PSEN mutants. This situation is diff erent from familial Alzheimer’s disease (FAD) patients with heterozygous PSEN1 

(or PSEN2) mutations that express mutant and WT PSEN1 (or PSEN2) in an equal ratio in the background of two WT PSEN2 (or PSEN1) alleles (right). 

CMV, cytomegalovirus.
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Table 3. γ-Secretase-dependent phenotypes of presenilin mutations

       Other
Model system Aβ40 Aβ42 Aβ42/Aβ40 AICD NICD N-cadherin phenotypes Reference

PSEN1-M146L        

Overexpression (HEK293, CHO)    ND ND  - [79,80,83]

Overexpression (PSEN-/-) ND ND ND ND  ND - [81]

Kinetic in vitro assay    ND ND ND - [83]

Transgenic mice ND   ND ND ND Total Aβ  [74]

        

PSEN1-L166P        

Overexpression (HEK293)      ND - [80]

Overexpression (PSEN-/-)       APP-CTFs  [64]

        

PSEN1-I213T        

Overexpression (PSEN-/-)    ND ND ND APP-CTFs  [123]

Kinetic in vitro assay    ND ND ND - [84]

Knock-in mice (heterozygous)    ND ND ND - [67]

        

PSEN1-R278I        

Knock-in mice (heterozygous) a      APP-CTFs  [68]

Primary cells (from knock-in mice)    ND  ND Total Aβ  [68]

       Aβ43 
Kinetic in vitro assay   ND  ND ND Total Aβ  [68]

        

PSEN1-A246E        

Overexpression (PSEN-/-)       APP-CTFs  [64,81]

Transgenic mice    ND ND ND - [124]

Primary cells    ND ND ND - [70,125]

        

PSEN1-ΔExon9        

Overexpression (HEK293)       - [78-80]

Overexpression (PSEN-/-)       APP-CTFs  [64,81]

Transgenic mice    ND ND ND - [124]

        

PSEN1-G384A        

Overexpression (HEK293, CHO)    ND ND  - [79,80,83]

Overexpression (PSEN-/-)       APP-CTFs  [64,75,107]

Kinetic in vitro assay     ND ND Total Aβ  [82,83]

        

PSEN1-C410Y        

Overexpression (PSEN-/-)    ND  ND APP-CTFs  [75,81,123]

        

PSEN2-N141I        

Overexpression (COS-1, N2a, CHO)    ND ND ND - [83,126]

Overexpression (PSEN-/-)       APP-CTFs  [64,65]

Kinetic in vitro assay    ND ND ND - [83]

Transgenic mice    ND ND ND - [127,128]

Primary cells    ND ND ND - [70,125]

PSEN mutations were chosen based on their investigation in multiple independent studies and model systems. All phenotypes of the PSEN mutants are reported in 
comparison to WT PSEN1. Studies that did not include a WT PSEN control condition are not included in this table. Up arrows indicate increase; down arrows indicate 
decrease; right-pointing arrows indicate no change compared to WT PSEN. Two arrows next to each other indicates that two or more studies reported diff erent results 
compared to WT PSEN. Increased APP-CTFs, which are the immediate substrates of γ-secretase, can be interpreted as a sign of reduced enzyme activity. N-cadherin 
processing by γ-secretase was assessed in the studies by Bentahir and colleagues [63], Marambaud and colleagues [78] and Saito and colleagues [67] in diff erent 
ways. However, in all cases a decrease indicates reduced processing of N-cadherin and diminished formation of the N-cadherin intracellular domain. aThe reduction 
in endogenous mouse Aβ40 steady-state levels in brain of heterozygous knock-in mice for the PSEN1-R278I mutation was only observed in the guanidine-HCL but 
not in the Tris-HCL-buff ered saline soluble fraction. Aβ, amyloid-β; AICD, amyloid precursor protein intracellular domain; APP, amyloid precursor protein; CHO, Chinese 
hamster ovary; CTF, carboxy-terminal fragment; ND, not determined; NICD, NOTCH intracellular domain; PSEN, presenilin; WT, wild type.
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sequentially every three to four amino acids along the α-

helical surface of the substrate APP, thereby converting 

longer Aβ peptides into shorter species [2,50]. In this 

model, FAD PSEN mutations may cause an overall 

reduction in proteolytic activity of γ-secretase, and such 

less effi  cient, slower mutants may release more Aβ42 

molecules from the active center before further trimming 

of Aβ42 to shorter Aβ peptides. Th is model also appears 

to be supported by the fact that the 180 diff erent PSEN1 

mutations are scattered over the entire molecule without 

any apparent hot spots, which is most compatible with 

the loss-of-function hypothesis.

A small number of knock-in mouse strains for FAD 

PSEN1 mutations have been created, in which the mutant 

alleles are expressed under control of the endogenous 

mouse PSEN1 promoter [66-69,84]. Th ese studies have 

either not provided evidence for substantially diminished 

γ-secretase activity (PSEN1-P264L, PSEN1-R278I) [66,68] 

or have produced inconclusive results (PSEN1-I213T) 

[67,84]. Th e PSEN1-R278I mutation has been particularly 

well studied in knock-in mice [68] (Table 2). Homozygous 

knock-in mice for this mutation (R278I/R278I) were 

embryonic lethal and displayed a phenotype similar to 

NOTCH knockout mice. In the brain of these mice, 

accumulation of APP and N-cadherin CTFs was 

observed, and AICD and NICD fragments were un-

detectable. Th is was confi rmed in kinetic in vitro studies 

using solubilized membrane preparations from hetero-

zygous (WT/R278I) or homozygous knock-in mice, 

which showed reduced Aβ and AICD generation from 

recombinant APP-CTF substrates in a gene-dose-

dependent manner. Taken together, these fi ndings 

indicate a substantial loss of γ-secretase activity of the 

mutant allele [68]. Th e decrease in enzymatic activity of 

the PSEN1-R278I mutant appeared to be particularly 

severe as other PSEN1 mutations have not caused 

embryonic lethality in homozygous knock-in mice or 

were able to rescue the phenotype in PSEN1-/- knockout 

mice [66,67,69,85,86]. Importantly, no developmental 

defects were observed in heterozygous knock-in mice, 

and the brain morphology of 3- to 24-month-old mice 

was indistinguishable from that of WT mice. In brain 

tissue from heterozygous knock-in mice, no changes in 

the steady-state levels of APP and N-cadherin CTFs, 

AICD and NICD were observed, indicating that the 

γ-secretase-mediated release of intracellular domains is 

not aff ected by heterozygous expression of the PSEN1-

R278I mutation [68]. A slight decrease in endogenous 

mouse Aβ40 was detected when brain tissue of 3-month-

old heterozygous mice was extracted in guanidine-HCL, 

but not when these mice were crossed to APP-transgenic 

mice. Very similar results have been reported for PSEN1-

M146V knock-in mice [69]. Interestingly, in APP/PSEN1-

R278I double transgenic mice, increased brain levels of 

Aβ43 were detected that correlated with enhanced 

amyloid pathology and cognitive defi cits, and Aβ43 

appeared to induce the formation of Th iofl avin T-positive 

aggregates in vitro even more effi  ciently than Aβ42 [68]. 

Th is suggests that Aβ43 might be an overlooked Aβ 

species that contributes to the formation of neurotoxic 

Aβ oligomers and plaque pathology. However, it remains 

to be seen whether other PSEN mutations have any 

signifi cant eff ects on the generation and secretion of 

Aβ43. In summary, in vitro studies have provided con clu-

sive evidence that many PSEN mutations cause a sub-

stantial loss of γ-secretase activity. However, the results 

from knock-in mice with heterozygous expression of 

PSEN mutants indicate that these frequently used cellular 

assays and, in particular, kinetic in vitro assays of PSEN 

mutants might underestimate the enzymatic activity of 

γ-secretase in a cellular context where both WT and 

mutant PSEN alleles contribute to the expressed 

γ-secretase complexes [66-69]. Importantly, in humans, 

validated loss-of-function mutations in the genes 

encod ing NOTCH or the γ-secretase subunits PEN-2, 

PSEN1 and Nicastrin cause skin phenotypes ranging 

from acne inversa to cutaneous squamous cell carci-

nomas, as well as chronic myelomonocytic leukaemia 

[87-89]. In addi tion, genetic deletion of γ-secretase 

complex components in mice has demonstrated that a 

30% reduction in γ-secretase activity is suffi  cient to 

induce a myelo proliferative disease resembling chronic 

myelomono cytic leukaemia [90]. However, these 

phenotypes, likely pro voked by reduced NOTCH 

processing and signaling, have never been associated 

with FAD, further arguing that heterozygous expression 

of PSEN mutations does not result in a substantial loss 

of γ-secretase activity [4].

In addition, it has been proposed that FAD PSEN1 

mutations impair γ-secretase-independent functions of 

PSEN proteins in signal transduction, autophagy and 

calcium homeostasis. Th e anti-apoptotic phosphatidyl-

inositol 3-kinase-AKT signaling pathway seems to be 

positively regulated by PSEN proteins. PSEN defi ciency 

or expression of PSEN1 FAD mutants reduced AKT 

phosphorylation and activity, and increased activity of its 

downstream target glycogen synthase kinase-3 (GSK-3) 

[91,92]. In knock-in mice for the PSEN1-I213T mutation, 

activation of GSK-3β was observed and correlated with 

increased phosphorylation of its substrate Tau and the 

formation of intracellular Tau inclusions [93]. Absence of 

PSEN or expression of PSEN1 FAD mutants has further 

been demonstrated to impair intracellular protein 

degrada tion, caused by a reduced turnover of autophagic 

vacuoles that fail to become acidifi ed and fuse with 

lysosomes [60]. Another consistent observation has been 

that the induced release of calcium from endoplasmic 

reticulum stores is strongly increased by PSEN FAD 
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mutants, which might result in deregulation of synaptic 

transmission and plasticity [61]. A few studies using 

primary cells from FAD carriers have confi rmed that 

PSEN mutants negatively aff ect the role of PSEN in 

autophagic protein degradation and calcium homeostasis 

[60,61]. With respect to all of these proposed γ-secretase-

independent functions, FAD PSEN mutants mimic the 

phenotype of PSEN defi ciency, indicating that the 

mutants behave as true loss-of-function alleles. While it 

is certain that PSEN mutants drive amyloidosis in FAD 

patients, however, the contribution of a potential loss of 

γ-secretase-independent functions to the clinical 

phenotype of FAD patients remains to be proven.

Eff ects of PSEN mutations on small molecules 

targeting the γ-secretase complex

While investigations of FAD cases have provided 

invaluable insights into the pathogenesis of AD, patients 

with FAD further constitute a unique population to 

conduct treatment or prevention trials with novel 

pharma ceuticals. Consequently, international consortia 

aim to recruit FAD patients with PSEN mutations for 

future clinical trials. In the past, pharmaceutical com-

panies have been cautious to include FAD patients in 

clinical trials with the argument that novel therapeutics 

might be less effi  cacious in these patients because of their 

specifi c genetic background or their more aggressive 

disease course. Th e described eff ects of PSEN mutations 

on small molecules targeting the γ-secretase complex, 

which constitutes a principal drug target in AD, have 

provided some support for this caution. Initially, it was 

described that the effi  cacy of γ-secretase inhibitors to 

decrease Aβ production was reduced in cultured cells 

overexpressing PSEN mutants [94-96]. Similarly, it was 

demonstrated that PSEN but not APP mutants blocked 

the eff ects of γ-secretase modulators (GSMs), which 

preferentially reduce the amyloidogenic Aβ42 species but 

spare proteolytic processing of the γ-secretase substrate 

NOTCH [94,97-100]. Th e initial studies used GSMs with 

low in vitro potency, which also did not have central 

nervous system drug properties. Recently, data have been 

reported for a second generation of potent and clinically 

relevant GSMs. Th e overall interpretation of these studies 

is more complex, with one report showing that PSEN 

mutants reduced the ability of GSMs to lower Aβ42 

irrespective of potency and structural class, and a second 

study claiming that only few particularly aggressive PSEN 

mutants rendered cells resistant to these GSMs [97,101]. 

It is important to note that all these results were obtained 

in cellular or animal models with overexpression of PSEN 

mutants. It remains possible, therefore, that the attenuat-

ing eff ect of PSEN mutants might not occur or be 

negligible when the mutation is expressed in the presence 

of one WT allele in FAD patients.

A better understanding of presenilin mutations 

will require improved cellular models

Th e lack of consensus concerning the eff ects of PSEN 

FAD mutations on γ-secretase-dependent and 

-independent functions and the heterogeneity of results 

obtained for individual mutations clearly demonstrate 

that a better understanding of FAD PSEN mutations will 

require improved cellular models. Th ese models need to 

account for the heterozygous expression of PSEN 

mutants in the presence of one WT allele in FAD 

patients, and they should allow a rigorous comparison of 

the eff ects of a larger panel of mutations in a controlled 

system. Primary fi broblasts or induced pluripotent stem 

cells derived from human PSEN mutation carriers 

theoretically provide a suitable cellular model to study 

the eff ects of PSEN mutations [102]; however, this 

approach has serious drawbacks. First, public cell line 

repositories do not contain primary cells with a suffi  cient 

number of diff erent PSEN mutations, and it is at present 

virtually impossible to acquire cells for specifi c muta-

tions. Second, a general problem is the lack of genetically 

matched control cell lines. Commonly, cell lines derived 

from healthy donors are used as controls, which, because 

of diff erences in genetic background and cell derivation, 

display considerable biological variability. Th is concern 

could be addressed in the future through novel methods 

of genome editing, such as engineered zinc fi nger 

nucleases that might allow the generation of isogenic 

control cell lines [103]. However, these methods are not 

yet effi  cient enough to produce adequate numbers of 

mutant cell lines. Th ird, even if genetically matched 

control cells are available, the biological variability 

between mutant cell lines derived from donors with 

diff erent PSEN FAD mutations makes them likely unsuit-

able for stringently controlled biochemical experiments. 

However, a clear alternative to human patient-derived 

cell lines are mouse embryonic stem cells, which are 

more easily amendable to genome editing using site-

specifi c recombinases [104]. Evidently, to establish im-

proved models that faithfully reproduce the genetic and 

biochemical characteristics of PSEN FAD patients will be 

laborious and time-consuming, but it is clearly required 

to overcome the shortcomings of current models based 

on overexpression of PSEN mutants.

Conclusion

APP and PSEN mutations cause FAD with autosomal-

dominant inheritance and early onset disease. FAD is 

clinically and neuropathologically largely indistinguish-

able from the sporadic forms of AD, indicating that 

amyloidosis is a driving force in the etiology of both FAD 

and sporadic AD. Biochemical studies have shown that 

APP mutations either shift the generation of Aβ peptides 

towards the highly amyloidogenic Aβ42 isoform or 
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enhance the aggregation propensity of the Aβ peptides. 

No evidence has been found that these mutations impair 

the physiological function of APP. PSEN mutations also 

drive amyloidosis in FAD patients through changes in the 

Aβ42/Aβ40 ratio. In addition, it has been proposed that 

PSEN mutations could impair other γ-secretase-

dependent and -independent functions of PSEN. It is 

impor tant, however, to note that none of theses pheno-

types have been comprehensively replicated in experi-

mental models that bear relevance to the heterozygous 

genetic background of FAD patients with PSEN muta-

tions. In the few studies that have used primary cells 

from FAD patients or heterozygous knock-in mice, only 

single or a small number of PSEN mutations were 

investigated. It appears premature, therefore, to conclude 

that loss-of function phenotypes like reduced NOTCH 

signaling that were reported in overexpression studies 

with FAD PSEN mutants are relevant to the clinical 

phenotype of FAD patients, or may even contribute to 

the pathology of sporadic AD.
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