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Abstract 

Background Due to the heterogeneity among patients with Mild Cognitive Impairment (MCI), it is critical to predict 
their risk of converting to Alzheimer’s disease (AD) early using routinely collected real-world data such as the elec-
tronic health record data or administrative claim data.

Methods The study used MarketScan Multi-State Medicaid data to construct a cohort of MCI patients. Logistic 
regression with tree-guided lasso regularization (TGL) was proposed to select important features and predict the risk 
of converting to AD. A subsampling-based technique was used to extract robust groups of predictive features. Predic-
tive models including logistic regression, generalized random forest, and artificial neural network were trained using 
the extracted features.

Results The proposed TGL workflow selected feature groups that were robust, highly interpretable, and consistent 
with existing literature. The predictive models using TGL selected features demonstrated higher prediction accuracy 
than the models using all features or features selected using other methods.

Conclusions The identified feature groups provide insights into the progression from MCI to AD and can potentially 
improve risk prediction in clinical practice and trial recruitment.

Keywords Alzheimer’s disease (AD), Mild cognitive impairment (MCI), Machine learning, Real-world data, Feature 
selection, Feature grouping

Background
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that leads to memory impairment, behavio-
ral changes, and other cognitive function deficits. There 
were no promising disease modifying therapies for AD 
until the approval of aducanumaband and lecanemab. 

The availability of these drugs is currently limited, and 
they demonstrated better effectiveness in patients at the 
early stages of the disease compared to the late stage. 
Therefore, it remains crucial to identify high-risk individ-
uals early and intervene based on modifiable risk factors.

Risk stratification is also vital for guiding future trials 
for AD. Clinical trials, particularly Phase III trials, are 
known for their high costs. Those for neurodegenera-
tive diseases like AD face additional challenges due to the 
potentially slow disease progression in some subjects and 
the limited duration of the trials (typically one to three 
years), which may not capture treatment effects, even if 
they exist. As a result, at least 98% of AD trials have failed 
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[1]. Even successful trials such as those for aducanumab 
and lecanemab are not without limitations and contro-
versies. Since diagnosing AD is a complex and potentially 
lengthy process, recent trials measured treatment effects 
based on differences in certain cognitive tests, biomark-
ers such as amyloid, or composite outcome measures 
within the trial timeframe. By developing a model that 
identifies a sub-population of early-stage AD patients at 
a higher risk of progressing to the late stage within the 
common trial timeframe, future trials can be designed to 
target this specific population and utilize more definitive 
primary outcomes such as the diagnosis of late-stage AD.

A relevant problem in this context is predicting the 
conversion from Mild Cognitive Impairment (MCI) 
to dementia due to AD. MCI serves as an intermedi-
ate stage between preclinical Alzheimer’s disease and 
dementia due to Alzheimer’s, representing a natural 
entry point into the Alzheimer’s and dementia care sys-
tem. Depending on the study population, about 10.2 to 
33.6% MCI patients proceed to AD annually, while others 
either experience no further cognitive decline or return 
to normal cognition [2]. Such heterogeneity is partially 
due to the broader definition of MCI, and poses a simi-
lar treatment challenge, making it critical to identify MCI 
patients at high risk of conversion to AD through predic-
tive modeling.

In the literature, numerous risk-prediction models 
have been developed for different target populations and 
dementia-related outcomes, utilizing various data types. 
See Chen et al. (2022) [3] for a review of the prediction 
models for conversion from MCI to AD. Many of these 
models incorporate brain imaging, cerebrospinal fluid 
analysis, genetic variants, and dementia-specific tests 
like neuropsychological test scores. Some studies have 
taken advantage of the rich resources provided by the 
ADNI project [4] to improve the prediction of conver-
sion from MCI to AD by combining genetics, quantita-
tive brain magnetic resonance imaging, and cognitive 
measures into a single model [5]. While these studies 
have achieved encouraging prediction performance, they 
fall short in addressing the needs of clinical practice and 
recruitment for clinical trials due to the non-routine col-
lection of these data in clinical care settings. Over the 
past five years, an increasing number of works on AD 
risk prediction have emerged, leveraging routinely col-
lected electronic health record (EHR) and administrative 
claim data. For example, machine learning models have 
been developed to predict AD among the seniors without 
prior dementia using the carefully chosen features from 
administrative claim data [6, 7], or pre-aggregated fea-
tures constructed from EHR data [8, 9].

To the best of our knowledge, our study is the first that 
predicts the conversion from MCI to AD using routinely 

collected administrative claim data, addressing a critical 
gap in the existing literature. Additionally, we are inter-
ested in identifying the features that play a crucial role in 
this conversion process. Instead of pre-aggregating and 
aggressively filtering features to reduce dimensionality, as 
commonly done in previous studies, we propose a novel 
data-adaptive procedure that simultaneously predicts 
MCI to AD conversion and selects and groups the most 
important features.

Methods
Data and study cohorts
The study utilized MarketScan Multi-State Medicaid data 
in the OHDSI Observational Medical Outcomes Part-
nership (OMOP) model, which was provided by Inter-
national Business Machines (IBM) Corporation. The 
IBM MarketScan databases are constructed by collect-
ing data from employers, health plans and state Medic-
aid agencies. The data encompass service-level claims for 
inpatient and outpatient services as well as outpatient 
prescription drugs. The database is designed to provide 
long-term longitudinal observational data and includes 
32.87 million patients.

A Cohort study was designed to investigate patients 
diagnosed with Mild Cognitive Impairment (MCI) in 
2006-2016. The aim was to predict their conversion to 
AD within 3 years after the MCI diagnosis using their 
administrative claim history during the one-year obser-
vation window prior to the MCI diagnosis (Fig.  1). AD 
and MCI were defined using International Classification 
of Diseases, Ninth/Tenth Revision (ICD9/ICD10) diag-
nosis codes (Table  1). Since AD is an age-related dis-
ease, the focus was on patients 50 years of age or older 
at the time of their MCI diagnosis. Patients with medi-
cal history less than a year prior to the MCI diagnosis 
were excluded, as were patients with less than 3 years of 
follow-up after the MCI diagnosis. This leads to 6,847 
patients, among whom 312 converted to AD within 3 
years. Stratified sampling based on whether being con-
verted to AD within 3 years was used to select 70% of the 
patients as the training cohort, while the remaining 30% 
of the patients formed the validation cohort. All variable 
selection and machine learning model training were done 
using the training cohort alone, and the validation cohort 
was only used for evaluation.

Most covariates were binary variables for the ICD 
codes for the administrative claims. Duplicated features 
and features with no incidence were removed, result-
ing in 16,862 remaining rare features. Additionally, 11 
baseline variables were included in the study: CHADS2, 
CHADS2VASc, gender, race (White and Black or African 
American), ethnicity (Hispanic or Latino), and the lin-
ear, quadratic, and cubic terms of age at MCI diagnosis. 
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CHADS2 and CHADS2VASc scores were two scores 
for atrial fibrillation stroke risk, and we scaled them to a 
range of 0 to 1. Patient age was normalized by centering 
it at 65 years old and then dividing it by 20.

Tree‑guided lasso for Rare feature selection 
and aggregation
Consider a logistic regression model where 
Yi~Bernoulli(pi) and logit(pi) = Xiβ for i=1, … ,n. Here Yi is 
the indicator of whether the patient progressed to AD, Xi 
is a length p feature vector from the health claim dataset 
for subject i, β is the length p regression coefficient vec-
tor. Let X be the n by p feature matrix that includes all n 
subjects in the data, where the ith row corresponds to Xi. 
This feature matrix, derived from Administrative Claim 
data, primarily consists of an incidence matrix of ICD10 
codes, with most entries being 0. In statistical literature, 
such features are sometimes referred to as “rare features” 
[10]. Rare features usually lack sufficient variation among 
samples to effectively measure their association with the 
outcome. Consequently, these features are intentionally 
discarded during data preprocessing or implicitly during 
model selection based on how the algorithm prioritizes 

the features. The scientific community has recognized 
this issue, and one approach to mitigate it involves pre-
clustering the features and aggregating the rare features 
within the same group based on previous studies [11]. 
However, even after aggregation, these features may still 
be too rare for subsequent variable selection, necessitat-
ing further ad hoc feature aggregation. This is partially 
due to the separation of the feature aggregation step 
from variable selection, which fails to adapt to the impor-
tance of these features. Combining these two steps could 
potentially enhance variable selection performance and 
enable identified clusters to better adapt to their impor-
tance in the regression model.

In practice, rare features are often related through a 
tree structure. For instance, the phylogenetic tree among 
microbiome species can be used to link the microbiome 
features. In general, this tree can be learned through 
hierarchical clustering of the data. Based on this tree, the 
effect of each leaf (elements of β) can be decomposed as 
the effects of their ancestors plus a leaf-specific effect. Let 
Γ be a tree with leaves1, … ,p, and the effect of node u ∈ Γ 
is γu. For j=1, … ,p, βj can be expressed as 
βj = u∈ancestor(j)∪{j} γu where ancestor(j) denotes the 

Fig. 1 Setup of the cohort

Table 1 ICD9/ICD10 diagnosis codes for MCI and AD

Code Name Class Vocabulary

G31.84 Mild cognitive impairment, so stated 5-char billing code ICD10CM

331.83 Mild cognitive impairment, so stated 5-dig billing code ICD9CM

G30.8 Other Alzheimer disease ICD10 code ICD10

G30.9 Alzheimer disease, unspecified ICD10 code ICD10

G30.0 Alzheimer disease with early onset ICD10 code ICD10

G30.1 Alzheimer disease with late onset ICD10 code ICD10

G30.8 Other Alzheimer’s disease 4-char billing code ICD10CM

G30.1 Alzheimer’s disease with late onset 4-char billing code ICD10CM

G30.0 Alzheimer’s disease with early onset 4-char billing code ICD10CM

G30 Alzheimer’s disease 3-char non-bill code ICD10CM
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indices of all the ancestor internal nodes of the terminal 
node j based on the tree. Let q be the number of nodes in 
the tree Γ, and A be a p-by-q binary matrix such that 
Aju = 1 if u ∈ ancestor(j) ∪ {j} and 0 otherwise. There is 
β = Aγ.

We propose transforming the feature matrix to 
∼
X = XA . Consequently, the systematic component of the 
logistic regression becomes logit(pi) =

∼
Xiγ . We adopt 

the weighted lasso penalty 
∑

u∈Γ q
1/2
u | γu | where qu 

is the number of leaves that are the children of node u. 
Let γ̂ be the estimate, and the estimate of β, the regres-
sion coefficients for the effects of the original features, is 
β̂ = Aγ̂ . As this estimate is guided by the tree, we refer 
to this method as “tree-guided lasso” (TGL). There is 
only one sparsity penalty parameter, which is selected by 
5-fold cross-validation. The output of this model includes 
the important groups of features and the regression 
coefficients.

Co‑occurrence tree for ICD10 codes
To define the tree of features using the data, we first 
establish the distance matrix D among the features based 
on the co-occurrence of rare features. For two features j 
and k, Let nj and nk denote their frequencies in the sam-
ple, respectively. Furthermore, let njk be the number of 
times they co-occur. We define their distance 
Djk = 1− njk√

njnk
 . Hierarchical clustering with average 

agglomeration is then applied to this distance matrix to 
build the tree, which guides the tree-guided lasso algo-
rithm mentioned earlier. To avoid large clusters, we 
remove internal nodes with a large number of 

descendants, retaining only the treelets with no more 
than 50 leaves.

Tight‑clustering for extracting important groups 
of features
High dimensional variable selection and clustering are 
both notoriously difficult and may be sensitive to the ran-
domness of the data. The rareness of the feature matrix 
further exacerbates these problems. Averaging the results 
from repetitive subsamples has been applied to improve 
the finite sample performance of variable selection [12] 
and extracting meaningful tight clusters from the data 
[13]. We employ similar techniques to extract robust 
clusters of important rare features.

As depicted in Fig. 2, for each replication, we randomly 
subset 80% of the training data, discard the extremely 
rare features (frequency <n0.2,e.g., at least 7 incidences 
out of 10,000 samples), build the tree, and employ the 
tree-guided lasso. We create a co-selection matrix among 
the features to summarize the results across B=100 rep-
lications. Each element in the ith row and jth column of 
this matrix represents the number of replicates in which 
the ith and jth features are both selected and grouped 
together (with a common ancestor node with nonzero 
effect). We further filter the features, excluding those 
with a selection proportion less than πimp . Additionally, 
elements in the co-selection matrix below πco are set to 
zero. Both πimp and πco are user-defined tuning param-
eters for interpretation purpose. We use 0.5 for both in 
our analysis. The remaining features are clustered into 
disjoint groups based on this co-selection map. The 

Fig. 2 The tree-guided lasso (TGL) workflow: it aggregates the tree-guided lasso outputs from repetitive sub-samples and outputs important 
feature groups
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output of this TGL workflow in Fig.  2 includes robust 
groups of important features for predicting the conver-
sion from MCI to AD.

Predictive modeling using the extracted features
We train various predictive models on the training cohort 
data using the extracted features from the proposed fea-
ture selection workflow described in Section  2.4. The 
selected features within the same group are aggregated 
using three strategies. The first strategy involves using 
them as individual features. The second strategy sums up 
the features in the same group. The third approach lev-
erages the binary nature of the original features, which 
represent the incidence of ICD10 codes, and defines the 
aggregated feature for the group as 1 if any of the original 
features in the group is 1, and 0 otherwise. The predictive 
models used include logistic regression (LR), generalized 
random forest (GRF) [14], and artificial neural network 
(ANN) [15]. We train these models on the training data 
using [1] all features, [2] Lasso selected features, [3] GRF 
selected features, [4] TGL selected features, [5] group 
sums of the TGL selected features, and [6] group unions 
of the TGL selected features. GRF ranks the variables by 
importance, and a cutoff is chosen so that it selects the 
same number of features as TGL. When training logistic 
regression on all features, we apply the lasso penalty with 
the tuning parameter lambda selected via 5-fold cross-
validation. For GRF, we train it on the training data with 
the default settings, except that we average 10,000 trees 
and assign re-sampling weights for the cases proportional 
to the inverse of the events’ prevalence. The ANN archi-
tecture consists of two hidden dense layers with 64 nodes 
and ReLu activation function. The output layer has one 
node and Sigmoid activation function. We determine the 
number of epochs via 5-fold cross-validation. All fea-
ture selection procedures and the predictive models are 
trained using the training cohort, and their performance 
is evaluated on the validation cohort.

Model evaluation
The proportion of conversion to AD from MCI is lower 
than 6%, making it an imbalanced classification problem. 
The Precision-Recall Curve (PRC) is a better measure 
of performance than the ROC curve in such cases [16]. 
We can also calculate the Area Under the PRC (AUPRC). 
While the Area Under the ROC (AUROC) for a use-
less random classifier is 0.5, its corresponding AUPRC 
is equal to the proportion of true cases in the data (AD 
conversion rate in our context). Extremely unbalanced 
classification problems like ours often yield small AUPRC 
values, such as 0.1.

For the cross-validation step in tree-guided lasso, 
AUPRC is maximized. For the evaluation of the predicted 

models based on all or the selected features, the models 
are trained using the training cohort, and both AUPRC 
and AUROC are calculated on the validation cohort. R 
package pROC is used to calculate AUROC and its confi-
dence interval is based on the “delong” method. AUPRC 
is calculated using R package PRROC, and the confidence 
interval is based on the Logit interval proposed in Boyd 
et al (2013) [17].

Relative risk for the important feature groups
The relative risks and the associated 95% confidence 
intervals for the important feature groups identified by 
TGL are calculated for the validation cohort. The fea-
tures in each group are aggregated as one feature using 
the group sum as described in Section  2.5. The expo-
sure and the non-exposure groups are defined based on 
whether the aggregated feature exceeds its median value. 
Due to the strong association between age and the other 
variables, the relative risks for features other than age are 
stratified by age group (50-59,60-69,70-79, and above 80). 
For each aggregated feature, a point estimate and a confi-
dence interval are calculated by inverting a score test sta-
tistics for its average stratified relative risk (equation 6 of 
Tang 2020 [18]).

Results
Dataset characteristics
The training and validation cohorts consist of 6,847 
MCI patients in total, with 312 of them converting to 
AD within 3 years. The conversion rate is approximately 
4.56%. The average age at the time of MCI diagnosis for 
those who later converted to AD was 71.8 years, while 
it was 66.2 years for those who did not convert. As 
expected, age was found to be a significant factor in our 
analysis in the next section. Among the subjects, 67.6% 
are female, 53.0% are White, 29.5% are Black or African 
American, and 1.2% identify as Hispanic. Most of the 
covariates are incidences of ICD codes, and the major-
ity of their entries are 0s. After removing features with all 
0s, the median incidence rate is 0.88% (roughly 6 occur-
rences out of 6,847 MCI patients). Consequently, the fea-
ture matrix consists primarily of rare features. The data 
distributions of the training cohort and the validation 
cohort are similar (Table S1). However, we acknowledge 
that the distributions of many of the individual codes in 
the two cohorts can be different due to the rarity and the 
high dimensionality of the data alone.

Variable selection
The proposed tree-guided lasso (TGL) workflow as 
depicted in Fig. 2 was repeated 100 times.

Out of the 16,862 covariates, 3,823 of them were 
selected as important covariates by TGL in at least one 
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of the 100 replications. Fig 3a illustrates the frequency of 
selection for these variables in the sub-sampling repli-
cates. It was observed that most covariates were selected 
in only a few sub-sampling replicates, indicating that 
their association to the response are likely to be spurious 
due to the randomness of the sub-sampling process. The 
truly important covariates are those that were frequently 
selected.

There were 72 covariates selected in at least 50% of 
the sub-sampling replicates, forming 12 distinct clus-
ters that were completely disjointed from each other 
(Fig.  3b). Additional file  1 presents these covariates, 
their importance measured by the relative frequency 

of selection, and their cluster assignments. Most of 
these clusters have clear interpretations (Table  2). 
For instance, cluster 3 includes 6 covariates related to 
Apnea, ranking as the second most important clus-
ter after age. It is also the only cluster with significant 
relative risk after stratified by age. Cluster 4 consists 
of 12 covariates associated with viral diseases of the 
abdomen, such as viral hepatitis C. The 5 covariates in 
Cluster 5 are related to intervertebral issues. Cluster 1, 
the largest and most heterogeneous cluster, comprises 
23 covariates of varying importance. These covariates 
are largely associated with the intake of pain medica-
tion. The two clusters with only one covariate are the 

Fig. 3 a Histogram of the numbers of sub-sampling replicates that each covariate is selected as an important covariate, conditional on that it 
is selected in any replicates. b Co-occurrence map of the 72 selected important covariates, grouped in 12 perfect tight clusters

Table 2 The interpretation, the number of covariates and the relative risk of the important feature clusters calculated using the 
validation cohort. The specific covariate names are in Additional file 1

Cluster ID Cluster Interpretation Number of Covariates Relative Risk (95% CI)

1 Pain medicine and acid disorder medication 23 0.75 (0.35, 1.14)

2 Electrolyte solution intake 12 1.02 (0.49, 1.55)

3 Apnea 6 0.53 (0.10, 0.95)

4 Infection of Abdomen such as Heptatitis C 12 0.56 (0.01, 1.09)

5 Intervertebral issues 5 1.06 (0.53, 1.59)

6 Age 1 3.19 (2.01, 5.00)

7 Joint Pain 3 0.68 (0.14, 1.23)

8 Diagnosis of cognitive disorder before MCI 2 NA

9 Strong painkillers such as oxycodone 3 0.83 (0.37,1.30)

11 Opioids 1

10 Brain injury or lesion 2 1.09 (0.55, 1.62)

12 Senile dementia 2 1.56 (0.69, 2.43)
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linear term of age and Opioid. We remark that the 
relative risk for Cluster 8 cannot be calculated because 
there is no conversion in the low-risk group (138 out 
of 2055), and the Cluster 9 and 11 are combined based 
on their similar interpretation for robust calculation of 
the relative risk.

Prediction using the extracted features
We assessed how the extracted features influenced 
predictive modeling by evaluating their performance 
on the validation cohort (Table  3). Using the selected 
features improved the predictive capability of logis-
tic regression. Logistic regression using the TGL 
selected features without aggregation yielded the high-
est AUPRC of 0.098 and the highest AUROC of 0.726 
with aggregation by group unions, compared to 0.079 
and 0.682 when using all features, and 0.077 and 0.684 
when using the features pre-selected by regular lasso. 
We also considered the feature set selected by a non-
linear model GRF. To our surprise, the nonlinear pre-
dictive model GRF does not perform well regardless of 
whether using all features or the pre-selected features 
based on an initial GRF fit. Other combinations of fea-
ture sets and predictive models are also explored. Most 
differences in AUPRC are not statistically significant 
based on the 95% confidence intervals. The AUROC 
values for models trained using all features, Lasso fea-
tures or GRF features are generally close to or lower 
than the lower bound of the 95% CI of the AUROC for 
the logistic regression model based on the group union 
of TGL features.

Discussion
In this paper, we addressed the problem of predicting the 
conversion from MCI to AD using administrative claim 
data. Our approach involved developing a novel machine 
learning model that simultaneously predicted the con-
version to AD from MCI and grouped the important 
features. The proposed model is an example of sparse 
regularization for high dimensional data that exploits 
the structured sparsity such as tree structure [10, 19–21].
In particular, Kim and Xing (2012) [19] developed tree-
guided group lasso for multiple response regression in 
which the multiple responses are related based on a tree. 
In contrast, our model exploited the tree structure among 
the predictors. This is similar to Yan and Bien (2021) [10]. 
However, their algorithm cannot be applied to classifica-
tion, while ours can. Our proposed pipeline, combining 
this novel model and repetitive sub-sampling, resulted in 
robust groups of predictive features for the conversion 
from MCI to AD.

Many of the identified feature groups have well-docu-
mented associations with AD and related dementia in the 
existing literature. The feature with the highest impor-
tance measure is age (Cluster 6). In our context, senile 
dementia (Cluster 12), an outdated term, is essentially an 
indicator variable that the patient was older than 65 when 
diagnosed with MCI, suggesting that the age at onset of 
MCI impacts the progression towards AD.

The cluster with the second highest average impor-
tance comprises six features related to apnea (Clus-
ter 3). The association between cognitive decline and 
apnea has been extensively documented in the literature 
and confirmed through meta-analysis [22]. This find-
ing is particularly interesting because apnea is a revers-
ible condition. Numerous studies have investigated 
whether treatment of obstructive sleep apnea (OSA) with 

Table 3 The predictive performance (AUPRC and AUROC with 95% CI) of ML models constructed using all features or only the 
selected features

Logistic regression GRF ANN

All features AUPRC 0.079 (0.038,0.153) 0.072 (0.034,0.145) 0.052 (0.022, 0.120)

AUROC 0.681 (0.632,0.731) 0.686 (0.642,0.730) 0.576 (0.524,0.628)

Lasso features AUPRC 0.077 (0.038,0.151) 0.080 (0.040, 0.155) 0.070 (0.033,0.143)

AUROC 0.684 (0.636,0.733) 0.682 (0.631,0.732) 0.671 (0.624,0.719)

GRF features (72) AUPRC 0.075 (0.037,0.149) 0.075 (0.036, 0.148) 0.067 (0.031,0.139)

AUROC 0.679 (0.629,0.729) 0.696 (0.651,0.741) 0.654 (0.603,0.705)

TGL features AUPRC 0.098 (0.052,0.176) 0.077 (0.038,0.151) 0.076 (0.037,0.150)

AUROC 0.709 (0.658,0.760) 0.701 (0.657,0.744) 0.682 (0.634,0.730)

Group sum of TGL features AUPRC 0.091 (0.049,0.169) 0.074 (0.036,0.148) 0.078 (0.038,0.152)

AUROC 0.723 (0.678,0.768) 0.695 (0.652,0.738) 0.692 (0.646,0.737)

Group union of TGL features AUPRC 0.094 (0.049,0.172) 0.074 (0.036,0.148) 0.086 (0.044,0.163)

AUROC 0.726 (0.681,0.771) 0.693 (0.647,0.738) 0.712 (0.665,0.758)
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continuous positive airway pressure (CPAP) in patients 
with cognitive impairment, many of which have con-
cluded that CPAP does have an effect [23]. In our analy-
sis, this feature cluster presents a marginally lower risk of 
conversion, which may be the effect of apnea treatment. 
It will be interesting to study the causal effects of apnea 
treatment on preventing AD using a larger dataset.

The largest cluster (Cluster 1) comprises 23 drug codes 
for various conditions, many of which are used for pain 
management. Three other important clusters are opioids 
(Cluster 11), opioid derivatives (Cluster 9), and joint pain 
(Cluster 7). Long-term Opioids use is generally related to 
increased risk of dementia [24].

There is a cluster of five features related to the degen-
eration of spine (Cluster 5). It has been found that there 
was a strong association between spondylosis (up to 15 
years before diagnosis) and AD risk, even after account-
ing for other identified risk factors [25]. It was argued 
that this association was not solely caused by the inflam-
matory nature of spondylitis. At the molecular level, the 
literature suggests that intervertebral disc degeneration 
and tau protein hyperphosphorylation are both regulated 
through the AMPK/GSK3β pathway [26, 27].

The other important clusters also exhibit interpretable 
connections to AD. Cluster 10 consists of brain lesions 
and injuries. The association between brain injury or 
brain lesions and AD has been well-documented in the 
literature [28, 29]. Cluster 8 (diagnosis of cognitive dis-
order before MCI) suggests that these patients may have 
experienced MCI onset before their formal diagnosis, 
highlighting the complexity of accurately diagnosing such 
conditions. Cluster 4 represents infectious diseases of the 
abdomen, such as Hepatitis C, with an importance meas-
ure of 0.61. The association between AD and viral infec-
tions of the abdomen, such as Hepatitis C, has long been 
debated [30–34]. Our results support the existence of an 
association, although the causality of such an association 
remains unclear. Cluster 2 comprises covariates repre-
senting the prescription of electrolyte solutions such as 
sodium chloride. The mechanism behind its association 
with AD is currently unknown.

We re-trained machine learning models using the 
TGL selected features, and their prediction accuracy on 
the validation cohort was better than the same modeled 
trained using all features or the selected features based 
on other methods. This finding highlights the potential 
of using the proposed TGL workflow and administrative 
claim data to examine the heterogeneity in the risk of AD 
among MCI patients. Furthermore, combining EHR data 
and claim data may further improve accuracy.

However, this study has limitations. Firstly, the sub-
population covered by Medicaid claim data may differ 
from those covered by other types of medical insurances. 

Secondly, both MCI and AD diagnoses are complex, and 
many positive cases may go unreported in our dataset.

Conclusions
In conclusion, we demonstrate the potential to utilize 
routinely collected administrative claim data for predict-
ing the conversion from MCI to AD. Through a purely 
data-driven approach, we successfully identify and group 
important features simultaneously. These feature groups 
are interpretable and align largely with findings in the 
existing literature. However, it is important to note that 
administrative claim data, while powerful, may not cap-
ture all the information within patients’ medical history. 
Nevertheless, our approach can serve as a starting point 
for future research aimed at combining multiple sources 
of routinely collected health history data to predict 
dementia-related diseases and their progression.
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