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Abstract 

Background The pathophysiology of Alzheimer’s disease (AD) involves β-amyloid (Aβ ) accumulation. Early identifica-
tion of individuals with abnormal β-amyloid levels is crucial, but A β quantification with positron emission tomography 
(PET) and cerebrospinal fluid (CSF) is invasive and expensive.

Methods We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neu-
ropsychology) measures to predict future A β-positivity in A β-negative individuals. We separately study A β-positivity 
defined by PET and CSF.

Results Cross-validated AUC for 4-year A β conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-
based A β definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled 
in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals 
(AUCs, respectively, 0.76 and 0.89 with a separate dataset).

Conclusion Standard measures have potential in detecting future A β-positivity and assessing conversion risk, even 
in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.
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Introduction
Alzheimer’s disease (AD) is a common neurodegenera-
tive disease with a complex and unclear pathway and a 
long prodromal phase. The progressive and irrevers-
ible nature of AD highlights the need for detecting early 
changes in the brain that occur decades before demen-
tia. Research on amyloid, tau, and neurodegeneration 
(ATN) biomarkers, in accordance with the NIA-AA 2018 
framework [1], has focused on tracking AD progression 
through beta-amyloid (Aβ ) and Tau protein accumula-
tions. These biomarkers are associated with neurode-
generation and cognitive decline [2]. Identifying amyloid 
burden in cognitively normal individuals holds promise 
for identifying those at risk of developing AD [3], and it is 
expected to become the standard for prescribing A β-tar-
geted drugs [4]. Currently, cerebrospinal fluid (CSF) and 
positron emission tomography (PET) with 18F-labeled 
amyloid tracers are established methods for confirming 
the presence and measuring the extent of A β accumula-
tion in the brain [5]. PET can detect metabolic and bio-
chemical alterations in the brain deviating from normal. 
The clearance efficiency of A β protein aggregates can be 
detected in CSF [6]. CSF peptides (Aβ1-42) and hyper-
phosphorylated tau are correlated with amyloid plaques 
and neuronal tangles observed in brain autopsies [7] and 
are linked to cognitive decline, offering valuable insights 
into early detection. Despite their significance, PET and 
CSF are not widely available. CSF can cause discomfort 
and are invasive, while PET involves exposure to radia-
tion and requires specialized equipment and personnel. 
Additionally, PET and CSF results can disagree because 
they measure different aspects of amyloid pathology [8, 
9]. Therefore, promoting the use of universally avail-
able data, such as demographics and cognitive scores, is 
important to advance AD research [10, 11].

Standardized and longitudinal datasets such as ADNI 
(Alzheimer’s Disease Neuroimaging Initiative), provide 
valuable resources for developing machine learning (ML) 
models with different feature combinations to study PET 
and CSF biomarkers. These ML models can highlight the 
important modalities for identifying at-risk individuals 
transitioning from normal control (NC) to mild cognitive 
impairment (MCI) and also potentially to dementia by 
tracking changes in A β-positivity states. However, there 
are limited studies addressing the future predictability of 
A β-positivity using widely available measures [12]. Addi-
tionally, the comparative analysis of model performance 
based on categorizing individuals as A β-positive or A β
-negative using either CSF or PET biomarkers remains 
understudied.

This study aims to develop an ML-based approach 
to predict the conversion to A β-positivity in individu-
als who are A β-negative using data available widely in 

clinical settings. We utilize demographic data (age, gen-
der, education), APOE4 (genetic), neuropsychologi-
cal scores, and MRI-derived brain volumes to predict 
whether an individual with A β-negative will convert to 
A β-positive (referred to as A β-Converter) or remain A β
-negative (referred to as A β-Stable) over a 4-year period. 
Analyses are performed separately and in parallel for 
grouping individuals based on CSF and PET biomarkers. 
We analyze the role of different data types in the predic-
tive performance of the model in each CSF and PET-
based cohort. Additionally, we examine whether baseline 
CSF/PET measures improve the predictive performance 
of the model and how that affects the contribution of 
cognitive measures and MRI biomarkers. We also inves-
tigate the role of baseline PET measures in predicting A β
-positivity based on CSF (Aβ42) and vice versa, the role 
of baseline CSF measures in predicting A β-positivity 
based on PET. Finally, we evaluate our model’s predic-
tive capability for conversion to MCI/dementia in healthy 
and MCI individuals. Our study extends to demonstrate 
that both classification and regression approaches display 
similar trends.

Materials and methods
ADNI data
Data used in this work were obtained from the ADNI 
(http:// adni. loni. usc. edu). The ADNI was launched in 
2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal 
has been to test whether serial MRI, PET, other biological 
markers, and clinical and neuropsychological assessment 
can be combined to measure the progression of MCI and 
early AD. For up-to-date information, see http:// www. 
adni- info. org.

This study included participants from all phases of 
ADNI with baseline demographics, APOE4, psychologi-
cal test results, and MRI biomarkers, who also had availa-
ble longitudinal CSF measures or 18 F-florbetapir (AV45) 
PET measures.

CSF and PET measures
CSF samples were collected and processed as previ-
ously described [13]. The concentration of A β42, pTau, 
and tTau in CSF was measured using the fully auto-
mated Elecsys immunoassays (Roche Diagnostics, Basel, 
Switzerland) by the ADNI biomarker core (Univer-
sity of Pennsylvania, Philadelphia, PA). We obtained 
these measures from the ADNI depository (UPENNBI-
OMK9_04_19_17.csv, UPENNBIOMK10_07_29_19.csv, 
UPENNBIOMK12_01_04_21.csv). Several cutoffs have 
been proposed and evaluated for determining A β-posi-
tivity based on CSF A β-42 measure, such as 980 pg/mL 
determined through ROC analyses with FBP PET as the 

http://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
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endpoint [14]. We selected a cutoff 880 pg/mL, which 
was derived based on the BioFINDER study, accounting 
for pre-analytic differences and consequently validated in 
ADNI [15]. We selected this cutoff for two distinct rea-
sons: (1) among suggested cutoffs it maximizes the num-
ber of participants, which is important due to limited 
participant numbers, particularly in the A β-Converter 
group; (2) the cutoff has been developed independently 
of ADNI data but validated on ADNI, which we consider 
as important characteristic [15, 16].

ADNI PET acquisition and processing protocols are 
described in previously published methods [17, 18] 
(https:// adni. loni. usc. edu/ metho ds/ pet- acqui sition/, 
https:// adni. loni. usc. edu/ metho ds/ pet- analy sis- method/ 
pet- analy sis/). We obtained global and regional 18 F-flor-
betapir SUVR (standardized uptake value ratios) values 
from the UCBERKELEYAV45_04_26_22.csv table down-
loaded from the ADNI website (https:// adni. loni. usc. 
edu/). To determine A β-positivity, we used a cutoff value 
of 1.11 to the global SUVR, i.e., summary florbetapir cor-
tical SUV normalized by whole cerebellum SUV [19].

Demographics, APOE4 , cognitive measures, and MRI
The ADNI baseline demographics (age, gender, years of 
education), APOE4, neuropsychological test results, and 
MRI biomarkers were obtained from ADNIMERGE.csv 
table downloaded from the ADNI website (http:// adni. 
loni. usc. edu/). We used RAVLT (Rey’s Auditory Verbal 
Learning Test) Immediate, RAVLT Learning, RAVLT 
Forgetting, RAVLT Percent Forgetting, ADAS13 (Alz-
heimer Disease Assessment Scale-13 items), ADASQ4 
(ADAS Delayed Word Recall ), MMSE (Mini-Mental 
State Examination), LDELTOTAL (Logical Memory 
Delayed Recall Total), TRABSCOR (Trail Making Test 
Part B), FAQ (Functional Assessment Questionnaire), 
and CDRSB (Clinical Dementia Rating - Sum of Boxes) 
as cognitive measures. These standard measures, which 
are widely used in assessing the cognitive and func-
tional performance of dementia patients, are explained 
in the ADNI General Procedures Manual (http:// adni. 
loni. usc. edu/ wp- conte nt/ uploa ds/ 2010/ 09/ ADNI_ Gener 
alPro cedur esMan ual. pdf ). As MRI biomarkers, we used 
the volumetric measures derived from FreeSurfer [20, 
21], which are listed in the ADNIMERGE table. These 
measures include volumes of ventricles, hippocam-
pus, whole brain, entorhinal, fusiform, middle temporal 
gyrus, and intra-cranial volume (ICV). Following [22], 
we used ICV as a separate feature, instead of normaliz-
ing other volumetric MRI measures with it. We did not 
consider quality control (QC) on the FreeSurfer segmen-
tations [21], but included all the participants and brain 
regions despite their FreeSurfer QC score. However, QC 
on original MRI data [23] was considered. We obtained 

FreeSurfer measures from the ADNI depository (UCS-
FFSX_11_02_15.csv, UCSFFSX51_ADNI1_3T_02_01_16.
csv, UCSFFSX51_11_08_19.csv, UCSFFSX6_08_17_22.
csv).

Omitting the FreeSurfer QC had no major effect on 
the predictive accuracy, but increased the number of 
samples. A similar conclusion was previously reached by 
Gómez-Sancho et al. [24] indicating that whether or not 
ADNI FreeSurfer segmentations were quality controlled 
was immaterial to MRI-based MCI-to-dementia conver-
sion prediction.

Study cohorts
To develop our classification models for predicting pro-
gression toward A β-positivity, we assigned participants 
into two overlapping cohorts based on the availability of 
longitudinal CSF measures or 18 F-florbetapir (AV45) 
PET measures. Specifically, we compiled a CSF-based 
cohort and a PET-based cohort. The subject selection 
procedure for each cohort is visualized in Fig.  1. The 
labeling of participants was constrained by the availabil-
ity of data and the established cut-off values.

For the CSF-based cohort, we selected participants 
with available baseline CSF data (N = 1415). Among 
these participants, we first selected the initially A β-nega-
tive individuals (N = 726) and then we excluded partici-
pants (1) with an initial diagnosis of dementia (N = 35), 
(2) without available follow-up CSF sample (N = 345), (3) 
with a follow-up duration of fewer than 4 years without 
conversion to A β-positivity (N = 172), and (4) with an 
unstable A β+/Aβ-status during the follow up (N = 12). 
Finally, among the remaining 162 individuals, we defined 
A β-negative individuals who converted positive within 
the available follow-up time period as A β-Converter 
(N = 52) and individuals who remained A β-negative for 
more than 4 years as A β-Stable (N = 110). In order to 
balance the dataset, we selected a set of auxiliary data 
from the initially A β-positive group. This step was crucial 
because the number of participants in the A β-Converter 
group was considerably lower than in the A β-Stable 
group, which could negatively impact the classification 
performance. Specifically, we selected individuals from 
the initially A β-positive group (N = 689) whose A β 42 
values were close to the cutoff used for classifying par-
ticipants into the A β-positive and A β-negative groups, 
i.e., individuals with A β42 > 680 pg/mL and A β42 < 880 
pg/mL (N = 244). The cut-off points of 680 and 880 were 
chosen for auxiliary data selection in such a way that a 
reasonable number of samples were obtained to balance 
the data set. We further excluded 47 individuals with 
an initial dementia diagnosis, 102 individuals without a 
follow-up CSF sample, and 17 individuals who returned 
to A β-negative status during the available follow-up. The 

https://adni.loni.usc.edu/methods/pet-acquisition/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
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remaining participants (N =78) are used as A β-Convert-
ers, but only during the training phase for balancing the 
dataset. This approach helped to create a more balanced 
dataset, which was necessary to develop a robust classifi-
cation model.

The same procedure was applied for selecting the 
PET-based cohort, which resulted in a dataset of 53 
individuals as A β-Converters and 178 individuals as A β
-Stables. To create an auxiliary dataset from the initially 
A β-positive group, cut-off points of 1.11 and 1.25 were 
used. As a result, 82 individuals were included in the 
auxiliary dataset for use as A β-Converters only during 
the training phase. The selection of these cut-off points 
was done to ensure a reasonable number of samples 
were obtained to balance the dataset.

It is important to emphasize that participants who 
are A β-positive at baseline, with their A β values close 
to the cutoff point, i.e., 78 participants in CSF-cohort 
and 82 participants in PET-cohort, are employed 
only during the training of the model and serve as A β

-Converters for balancing the dataset during the train-
ing. They are not used in the testing of the model.

A follow-up period of 4 years was chosen for the A β
-Stable group in order to exclude participants with 
shorter follow-up duration. This decision was made to 
prevent potential false negatives while ensuring a rea-
sonable number of participants within the A β-Stable 
group. Increasing the follow-up period beyond 4 years 
would have led to a marked reduction in the number of 
participants.

To develop our regression models for predicting future 
A β42, we only selected subjects with available baseline 
and longitudinal CSF data. Among those, we eliminated 
participants with dementia diagnosis at baseline and then 
we restricted our selection to participants with CSF fol-
low-up samples for at least 4 years. If an individual had 
multiple follow-up samples after 4 years, the first sam-
ple (closest to 4 years) was used as the future sample for 
the analysis. Two hundred fifty-three individuals were 
included in our dataset as a result. Similarly, we selected 

Fig. 1 Data selection procedure for predicting progression to A β-positivity for a CSF-cohort and b PET-cohort. The data from Stable A+ individuals, 
who are A β-positive at baseline with their A β values close to the cutoff point, are employed only during the training of the model and serve as A β
-Converters for balancing the dataset during the training. They are not used in the testing of the model
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385 individuals for estimating future global SUVR based 
on PET data. The baseline characteristics of study cohorts 
are presented in Table 1 and participant’s RIDs are avail-
able as Supplementary material.

For independent validation of our models, we selected 
a fully non-overlapping cohort from the one used for 
training. The independent validation was done to evalu-
ate our CSF-based and PET-based A β-positivity conver-
sion prediction models for MCI/dementia conversion 
prediction in healthy and MCI individuals. Since A β 
plays a significant role in the initiation of the AD process, 
the A β-positivity conversion prediction model should be 
able to detect AD-related cognitive decline even though 
it is not specifically developed to predict conversion to 
MCI/dementia. To this end, we selected two different 
datasets for assessing each CSF/PET-based model: The 
first dataset was for evaluating the future conversion of 
MCI/dementia in CN individuals and the second dataset 
was for the evaluation of future conversion of dementia 
in MCI individuals. For the evaluation of the CSF-based 
model, we considered all ADNI participants with a base-
line diagnosis of CN or MCI who were not utilized for 
training the CSF-based approach and who had available 
baseline demographics, APOE4, neuropsychological test 
results, and MRI biomarkers. We determined two groups 
based on baseline and longitudinal diagnosis labels, 
regardless of CSF/PET biomarker status: (a) Stable group: 
CN/MCI individuals who have remained stable for 5 years 

or more following baseline, (b) Converter group: (1) Indi-
viduals with CN diagnosis at baseline who later develop 
MCI or dementia (the last two diagnoses must be MCI or 
dementia), and (2) MCI individuals who later develop to 
dementia (the last two diagnoses must be dementia). This 
resulted in a dataset of 67 converters and 131 stables for 
conversion prediction in CN individuals and a dataset of 
211 converters and 126 stables in conversion prediction 
in MCI individuals (Table  2). The same procedure was 
used to select data for the PET-based model evaluation, 
resulting in a dataset of 74 converters and 95 stables for 
conversion prediction in CN individuals and a dataset of 
234 converters and 90 stables in conversion prediction in 
MCI individuals (Table 3).

Machine learning framework
We developed a classifier based on the ridge logistic 
regression (RLR) approach [26] to predict the conversion 
of A β-positivity within 4 years in A β-negative individu-
als in both the CSF-based cohort and PET-based cohort. 
The framework of the classification procedure is shown 
in Fig. 2.

The number of participants in our PET-cohort and 
CSF-cohort differs because individuals in each cohort 
were selected based on the availability of CSF/PET data 
(Fig.  1). To ensure a fair comparison between the CSF 
and PET experiments, we decided to include an equal 
number of participants for CSF-based and PET-based 

Table 1 Characteristics of the study cohorts: Age, education, A β42, and global SUVR measures are reported as mean(standard 
deviation). CN: cognitively normal, SMC: subjective memory concern (participants with self-reported significant memory concern), 
MCI: mild cognitive impairment, EMCI: early MCI, LMCI: late MCI. Classification of EMCI and LMCI is done by ADNI based on the WMS-R 
Logical Memory II Story A score. The specific cutoff scores were as follows (out of a maximum score of 25): EMCI was assigned for a 
score of 9–11 for 16 or more years of education, a score of 5–9 for 8–15 years of education, or a score of 3–6 for 0–7 years of education. 
LMIC was assigned for a score of ≤ 8 for 16 or more years of education, a score of ≤ 4 for 8–15 years of education, or a score of ≤ 2 for 
0–7 years of education [25]

CSF-cohort PET-cohort

 Baseline 
characteristics

Aβ-Converter Aβ-Stable Auxiliary data Regression-
cohort

Aβ-Converter Aβ-Stable Auxiliary data Regression-
cohort

Sample size (N) 52 (32%) 110 (68%) 78 253 53 (23%) 178 (77%) 82 385

ADNI1/
ADNIGO/
ADNI2/ADNI3

15/6/30/1 25/18/67/0 27/7/41/3 81/35/137/0 0/7/44/2 0/31/140/7 0/8/66/8 0/69/308/8

Age, years 73.7 (7.9) 71.4 (7.0) 73.11 (6.7) 72.1 (6.7) 71.9 (6.9) 70.2 (6.8) 72.4 (7.1) 71.4 (6.7)

Sex, M/F 25/27 59/51 38/40 138/115 26/27 92/86 38/44 194/191

Education, years 16.9 (2.4) 16.3 (2.6) 16.1 (2.8) 16.3 (2.7) 16.6 (2.5) 16.7 (2.5) 16.2 (2.7) 16.4 (2.5)

APOE4 (0/1/2) 32/15/5 96/14/0 32/36/10 163/73/17 32/18/3 149/26/3 40/36/6 245/116/tr24

CN/SMC/EMCI/
LMCI

16/5/12/19 51/12/26/21 19/6/18/35 95/18/62/78 28/7/13/5 65/24/64/25 17/20/28/17 123/57/139/66

Aβ 42 (CSF-
cohort)/global 
SUVR (PET-
cohort)

1036.4 (182.2) 1791.4 (526.4) 754.4 (54.8) 1196.3 (661.5) 1.05 (0.04) 1.00 (0.04) 1.18 (0.04) 1.44 (0.20)
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model training. Given that the PET-based dataset con-
tains more individuals, we randomly subsampled it to 
achieve the same number of participants as in the CSF-
based model for the training phase.

We designed three models with different feature com-
binations for each PET-based and CSF-based A β-positiv-
ity prediction task: The first model was trained using only 
demographic data and APOE4, the second model was 

trained using neuropsychological test results in addition 
to demographic data and APOE4, and the third model 
was trained using all demographic data, APOE4, neu-
ropsychological test results, and MRI biomarkers.

In addition to the classification task, we developed a 
regression strategy based on ridge linear regression [27] 
to predict future A β 42 (CSF-based) and global SUVR 
(PET-based) values from multimodal data similar to the 

Table 2 Characteristics of the validation cohorts for performance validation of CSF-based model. Age and education are reported as 
mean(standard deviation)

CN-cohort MCI-cohort

 Baseline characteristics Converter-CN Stable-CN Converter-MCI Stable-MCI

Sample size (N) 67 (34%) 131 (66%) 211 (63%) 126 (37%)

ADNI1/ADNIGO/ ADNI2/ADNI3 32/0/31/4 57/0/73/1 145/9/48/19 41/40/45/0

Age, years 76.2 (5.0) 72.9 (5.4) 74 (6.7) 70.7 (7.1)

Sex, M/F 41/26 58/73 129/82 78/48

Education, years 16.3 (2.7) 16.4 (2.8) 15.8 (2.8) 16.0 (2.3)

APOE4 (0/1/2) 42/23/2 101/30/0 68/105/38 84/36/6

CN/SMC/EMCI/LMCI 51/16/0/0 105/26/0/0 0/0/24/187 0/0/74/52

Table 3 Characteristics of the validation cohorts for performance validation of PET-based model. Age and education are reported as 
mean(standard deviation)

CN-cohort MCI-cohort

 Baseline characteristics Converter-CN Stable-CN Converter-MCI Stable-MCI

Sample size (N) 74 (44%) 95 (56%) 234 (72%) 90 (28%)

ADNI1/ADNIGO/ ADNI2/ADNI3 48/0/22/4 69/0/24/2 165/8/53/8 47/25/18/0

Age, years 75.9 (4.5) 74.6 (5.6) 74.1 (6.6) 72.5 (7.3)

Sex, M/F 46/28 42/53 147/87 34/56

Education, years 16.1 (2.8) 16.5 (2.8) 15.9 (2.8) 15.7 (3.0)

APOE4 (0/1/2) 48/24/2 75/19/1 80/112/42 53/33/4

CN/SMC/EMCI/LMCI 63/11/0/0 80/15/0/0 0/0/24/187 0/0/22/212

Fig. 2 Schematic representation of the classification framework
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classification task with three models using various fea-
ture combinations. By applying a regression model, we 
were able to eliminate the effects of the cutoff point for 
classifying participants into A β+/Aβ - groups on the 
performance.

Moreover, as presented in Table  1, the participants in 
the CSF-cohort originated from different ADNI cohorts, 
including ADNI1. The participants in ADNI1 under-
went 1.5-Tesla (1.5-T) T1-weighted MRI images, whereas 
participants in other ADNI cohorts underwent 3T MRI 
scans. To account for differences in MRI biomarkers 
caused by different field strengths, we applied ComBat 
[28], as a domain adaptation method to the MRI bio-
markers before performing the actual machine learning 
procedure. ComBat employs an empirical Bayes method 
for batch correction in microarray expression data, and it 
has also been successfully utilized for domain adaptation 
in imaging data [29–31]. We then compared the results 
obtained with and without applying ComBat. However, 
the addition of a domain adaptation step using Com-
Bat approach did not affect the results. Therefore, we 
excluded it and applied our machine learning approach 
to the original MRI biomarkers.

The Supplementary Table S  1 summarizes the experi-
ments reported in different subsections of the “ Results” 
section. The codes for classification and regression analy-
ses are available at “https:// github. com/ Elahe hMora di/ 
AB- posit ivity- predi ction”.

Implementation and performance evaluation
We used two nested cross-validation loops (10-fold for 
each loop) to evaluate the model’s performance and esti-
mate the model’s parameter ( � ) to prevent overfitting and 
maximize performance. First, an external 10-fold cross-
validation was implemented in which samples were ran-
domly divided into 10 subsets with the same proportion 
of each class label (stratified cross-validation). At each 
step, a single subset was left for testing and the remain-
ing subsets were used for training. Again, the training 
set was divided into 10 subsets used to select the model’s 
parameter ( � ). The optimal parameters were selected in 
classification according to the misclassification error and 
in regression according to MSE( the mean square error) 
across the 10-fold of the inner loop. The performance 
of the model was then evaluated based on mainly AUC 
(area under the receiver operating characteristic curve) 
in classification analyses and correlation score in regres-
sion analyses in the test subset of the outer loop. We also 
provided balanced accuracy, sensitivity, and specificity 
for the classification analyses and mean absolute error 
for regression tasks in Supplementary materials. The 
reported results in the “  Results” section are averages 

over 10 nested 10-fold CV runs. Repeated CV was used 
to reduce variability due to the partitioning of the data.

To compare the AUCs of two learning models, we used 
the Delong test on the results of a computation run with 
the median AUC. Comparison of correlation coefficient 
was tested using methods described by Diedenhofen 
and colleagues  [32]. All the analyses were done using R 
(version 4.1.1), with the following packages: glmnet [33], 
caret  [34], sva  [35], cocor  [36], pROC  [37], Daim  [38], 
ggplot2 [39], and complexheatmap [40].

Results
Predicting PET and CSF A β-positivity in A β-negative 
individuals from multimodal data excluding PET and CSF 
baseline measures
We predicted the progression to A β-positivity based on 
CSF and PET data. As explained in the “Methods” sec-
tion, we designed three models with different feature 
combinations for each classification of PET-based and 
CSF-based future A β-positivity prediction as well as 
for the regression model of predicting future A β 42 and 
global SUVR values. Figure  3 shows the results of all 
these computational analyses. These results are the aver-
age over 10 times repeated 10-fold cross-validation anal-
yses for each method.

According to the findings (Fig.  3a, b, c, d; Fig. S1), 
CSF-based models outperformed PET-based models 
in both classification and regression tasks. The average 
AUC value across 10 computation runs was 0.78 with a 
95% confidence interval (95% CI) of 0.70 to 0.85 with all 
demographic, APOE4, neuropsychological test results, 
and MRI biomarkers for predicting CSF-based progres-
sion to A β-positivity and 0.61 (95% CI of 0.53 to 0.70) for 
predicting PET-based progression to A β-positivity. The 
average correlation score for predicting future A β 42 was 
0.45 (95% CI of 0.37 to 0.53), and the average correlation 
score for predicting future global SUVR was 0.40 (95% CI 
of 0.31 to 0.49), with all demographic, APOE4, neuropsy-
chological test results, and MRI biomarkers.

We explored the characteristics of individuals not cor-
rectly classified by the A β-positivity prediction model, 
particularly regarding their A β-values to determine if 
misclassified cases are closer to the positivity cutoff. 
For CSF-based experiments, we used the model with all 
measures, including demographics, APOE4, neuropsy-
chological test results, and MRI, as it demonstrated supe-
rior performance. In PET-based experiments, the model 
with only demographics and APOE4 measures was cho-
sen, exhibiting the best performance in the PET-based 
model. Figure S  3 presents a box plot of the A β-value 
(Aβ 42 for CSF and global SUVR for PET) for the last 
visit, utilized for labeling in each group. However, no sig-
nificant differences in A β-values were observed between 

https://github.com/ElahehMoradi/AB-positivity-prediction
https://github.com/ElahehMoradi/AB-positivity-prediction
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correctly classified and misclassified individuals in both 
CSF-based and PET-based experiments. We also exam-
ined their diagnosis at baseline; however, there were no 
significant differences observed between correctly classi-
fied and misclassified individuals.

The addition of neuropsychological test results and 
MRI biomarkers to the demographics and APOE4 data 
increased the performance of the CSF-based A β-posi-
tivity conversion prediction model as shown in Fig.  3a. 
The average AUC value for predicting A β-positivity in 

Fig. 3 Predicting future A β-positivity from multimodal data excluding PET and CSF baseline measures: a Bar plots showing the average AUC 
and average correlation score across 10 computation runs for CSF-based and PET-based models, with 95% confidence intervals error bars. b 
Distribution of probability score derived by RLR for PET-based and CSF-based prediction in A β-Stable and A β-Converter groups. c, d Scatter 
plot for estimation of A β 42 (c) and global SUVR (d) derived by ridge linear regression (with demographics, APOE4, neuropsychology, and MRI 
biomarkers). The results in b, c, and d are from 1 computation run with median performance. e, f Heatmap of coefficient values across 10 runs 
of 10-fold CV (100 models) for CSF-based models (e) and pet-based models (f), with a single column heatmap representing the correlation score 
between each variable and the label (Aβ-Stable, A β-Converter), and a bar graph showing the importance of each predictor calculated by the mean 
of the absolute value of regression coefficients derived by RLR. There are 100 columns in the heatmaps, with each column representing 
the coefficient values for one model. The performance of predicting A β-positivity in A β-negative individuals was higher with CSF-cohort compared 
to PET-cohort, suggesting the higher relevance of CSF data for conversion prediction. ADAS13:Alzheimer Disease Assessment Scale, 13 items, 
ADASQ4: ADAS Delayed Word Recall, MMSE: Mini-Mental State Examination score, RAVLT: Rey’s Auditory Verbal Learning Test, LDELTOTAL: Logical 
Memory Delayed Recall Total, TRABSCOR: Trail Making Test Part B, FAQ: Functional Assessment Questionnaire, CDRSB: Clinical Dementia Rating-Sum 
of Boxes, ICV: intracranial volume, MidTemp: middle temporal gyrus
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A β-negative individuals increased from 0.72 (95% CI of 
0.63 to 0.80) to 0.78 (95% CI of 0.70 to 0.85), although the 
improvement was not statistically significant (p = 0.18) 
according to Delong’s test. The average correlation value 
for predicting future a β 42 value also increased slightly, 
from 0.44 (95% CI of 0.35 to 0.52) to 0.45 (p  = 0.50). 
However, adding neuropsychological test results and 
MRI biomarkers to demographic and APOE4 measures 
did not improve the performance of the PET-based mod-
els. Our results showed that including these variables 
decreased the performance of the PET-based A β-positiv-
ity conversion prediction model. The average AUC value 
decreased from 0.68 (95% CI of 0.60 to 0.76) to 0.61 (95% 
CI of 0.53 to 0.70). The average correlation value for pre-
dicting future global SUVR value also slightly decreased, 
from 0.41 (95% CI of 0.32 to 0.49) to 0.40 (95% CI of 0.31 
to 0.49).

We investigated the contribution of different variables 
in CSF-based and PET-based models, accounting for all 
demographics, APOE4, neuropsychology test results, and 
MRI biomarkers (Fig. 3e and f, Fig. S2). Figure 3e and f 
show the coefficient values for 100 RLR classification 
models, derived from 10 runs of 10-fold CV, with a sin-
gle column heatmap representing the correlation score 
between each variable and the label (Aβ-Stable, A β-Con-
verter), and a bar graph indicating the significance of 
each variable, calculated by taking the mean of the abso-
lute values of the regression coefficients.

In PET-based models, the primary contributors were 
APOE4 and age (as shown in Fig.  3f ), whereas in CSF-
based models (Fig.  3e), several variables from different 
data types are significantly contributing, with APOE4 
being the most significant, followed by the volume of 
ventricles and TRABSCORE (Trail Making Test Part 
B). Additionally, the correlation panels in Fig.  3e and f, 
Tables S 2, and S 3 show a stronger correlation between 
various neuropsychological test results and MRI bio-
markers with CSF-based labeling compared to PET-
based labeling. This explains the higher contribution of 
different variables in CSF-based modeling, as well as the 
superior performance of CSF-based modeling.

The difference in the performance of the PET-based 
and CSF-based A β positivity is quite interesting. How-
ever, it is important to note that CSF and PET measures 
capture distinct aspects of the underlying biology, and, of 
course, the choice of CSF measure for defining A β posi-
tivity significantly influences the results. We investigated 
the correlation between A β 42 and the A β42/Aβ 40 ratio 
with PET global SUVR using ADNI data. The correlation 
between A β 42 and PET global SUVR was − 0.59, whereas 
the correlation between the A β42/Aβ 40 ratio and PET 
global SUVR measure was − 0.73 (Fig. S4). However, we 
defined A β-positivity based on A β 42 alone, since the 

A β 40 measure was only available for a small number of 
participants. The dataset with the A β42/Aβ 40 ratio is 
rather limited, comprising 13 A β-Converters and 63 A β
-Stable cases, with the converter group being particularly 
underrepresented. Due to the small size, we are con-
cerned that it may not be sufficient for the development 
of a robust predictive model, thus putting the reliability 
of the results at risk.

Predicting PET and CSF A β-positivity in A β-negative 
individuals from multimodal data including PET and CSF 
baseline measures
We investigated the use of baseline CSF measures, i.e., A β
42, pTau, and Tau measures, to predict future CSF-based 
A β-positivity and the use of baseline PET measures, i.e., 
global and regional SUVR measures, to predict future 
PET-based A β-positivity. Our goal was to assess the 
validity of baseline CSF and PET measures for predicting 
future conversion. To gain insight into the contribution of 
other data types besides CSF baseline and PET baseline 
measures, we designed four models with different feature 
combinations. We further developed a regression-based 
approach to predict the changes (future - baseline) in the 
A β 42 and global SUVR values. We predicted the changes 
in A β42/global SUVR values rather than their future val-
ues because of the high correlation between the baseline 
and future values of these measures. Figure 4 and Fig. S5 
show the results of all these computational analyses.

To enhance the robustness and reliability of our results, 
we chose to exclude individuals with atypical changes: 
a significant decrease in PET-based A β values and a 
notable increase in CSF-based A β values with increas-
ing age. Individuals who showed a marked reduction 
in PET-based A β values and a pronounced rise in CSF-
based A β values over a 4-year period were considered 
atypical. Such cases could potentially indicate issues with 
data acquisition. Specifically, we removed 11 individuals 
from the CSF regression cohort with an increase in A β 42 
higher than 500 pg/mL, and similarly, 11 individuals were 
removed from the PET regression cohort with a decrease 
in global SUVR greater than 0.1. Although the num-
ber of participants with such changes in A β values was 
relatively small, their removal had a clear impact on the 
model performance of the CSF-based model but not of 
the PET-based model. In the CSF-based model, excluding 
outliers significantly improved the model’s effectiveness. 
Specifically, in predicting changes in A β 42 over 4 years 
using CSF measures, the correlation score improved 
from 0.21 to 0.44 upon removing outliers. Conversely, 
in PET-based analyses for predicting changes in global 
SUVR based on baseline PET measures, the correlation 
score slightly decreased after outlier exclusion, from 0.30 
to 0.27. The outlier removal was clearly more important 
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for the CSF-based model probably due to the existence of 
obvious outliers in CSF values but not in PET values.

As expected, using baseline CSF measures to predict 
future CSF-based A β-positivity and using baseline PET 
measures for predicting future PET-based A β-positivity 
resulted in relatively high performance. Specifically, for 
CSF-based A β-positivity prediction, the average AUC 
significantly increased to 0.93 when using only baseline 
CSF measures, compared to an AUC of 0.78, the high-
est achieved in experiments without CSF baseline data. 
Similarly, in the context of PET-based A β-positivity pre-
diction, the average AUC increased to 0.78 with only 
baseline PET measures from 0.68, the best performance 
without baseline PET data (as detailed in the “ Predicting 

PET and CSF A β-positivity in A β-negative individuals 
from multimodal data excluding PET and CSF baseline 
measures” section).

However, CSF-based prediction outperformed PET-
based prediction in terms of performance (as shown in 
Fig.  4a). The average AUC value over 10 computation 
runs was 0.93 (95% CI of 0.88 to 0.97) for CSF-based pre-
diction, whereas the average AUC value was 0.78 (95% 
CI of 0.71 to 0.84) for PET-based prediction. Moreover, 
the average correlation value for predicting the changes 
in A β 42 was 0.44 (95% CI of 0.27 to 0.56), whereas for 
predicting the changes in global SUVR value, the aver-
age correlation score was 0.27 (95% CI of 0.17 to 0.35). 
Interestingly, adding other data types did not improve the 

Fig. 4 Predicting future A β-positivity from multimodal data including PET and CSF baseline measures: a Bar plots showing the average AUC 
and average correlation score (predicting the difference between future and baseline A β42/global SUVR measures) across 10 computation runs 
for CSF-based and PET-based models, with 95% confidence intervals error bars, CSF/PET stands for CSF baseline measures (Aβ42, pTau, Tau) 
for predicting CSF-based A β-positivity and PET measures (global and regional) for predicting PET-based A β-positivity. b, c Scatter plot for estimation 
of the difference between future and baseline A β 42 (c) and the difference between future and baseline global SUVR (d) derived by ridge linear 
regression (with CSF/PET measures). The results are from 1 computation run with median performance. d, e Heatmap of coefficient values 
across 10 runs of 10-fold CV (100 models) for CSF-based classification model (d) and PET-based regression model (e), with the bar graphs showing 
the importance of each predictor calculated by the mean of the absolute value of regression coefficient. The results of experiments without PET 
and CSF baseline measures are shown in Fig. 3
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performance of classification and regression tasks in both 
CSF-based and PET-based analyses (Fig. 4a, Fig. S5).

We explored the impact of various variables, including 
demographics, APOE4, neuropsychological test results, 
and MRI biomarkers, with baseline CSF/PET measures 
in both PET-based and CSF-based models. Figure 4d and 
e visualizes the coefficient values for the top 20 predic-
tors. Although the addition of additional data types did 
not improve overall model performance, the visualization 
of coefficient values emphasized substantial contribu-
tions from specific features, particularly APOE4, when 
integrated into the model. Particularly in the CSF-based 
model (Fig.  4d), other features from neuropsychologi-
cal test results and MRI measures also exhibited signifi-
cant contributions. Despite the absence of performance 
improvement, these findings emphasize the importance 
of specific features beyond baseline CSF/PET measures.

Predicting CSF-based future A β-positivity from CSF 
and PET baseline measures
We further extended our analysis by predicting CSF-
based future A β-positivity based on baseline CSF meas-
ures and baseline PET measures. We selected only 
individuals with available PET baseline measures in the 
CSF-based cohort, resulting in a dataset of 84 A β-Stables, 
36 A β-Converters, and 50 A β-positive as auxiliary data 
(for using as A β-Converters only in the training phase to 
balance dataset). We developed a classification model to 
predict future A β-positivity with three different feature 
combinations: the first model was trained based on CSF 
measures only, the second model based on PET measures 
only, and the third model based on both CSF and PET 
measures. The results are shown in Fig.  5a and Fig. S6. 
As anticipated, using baseline CSF measures for predict-
ing CSF-based future A β-positivity resulted in improved 
performance compared to using baseline PET measures. 
Interestingly, the addition of baseline PET measures with 
baseline CSF measures did not improve the performance 
of the classification model for predicting future A β-posi-
tivity. The average AUC was 0.93 (95% CI of 0.87 to 0.98) 
using only CSF measures, 0.82 (95% CI of 0.72 to 0.90) 
using only PET measures, and 0.91 (95% CI of 0.85 to 
0.96) using both CSF and PET measures.

To predict changes in A β42, first, we selected 169 
individuals from the CSF regression-cohort who had 
available PET baseline measures. We then removed six 
individuals as outliers, with the changes in A β 42 higher 
than 500. Again we designed the regression model for 
predicting the changes in A β 42 using three different fea-
ture combinations: CSF measures only, PET measures 
only, and the combination of PET and CSF measures. The 
resulting average correlation value were 0.41 (95% CI of 
0.23 to 0.55) using only CSF measures, 0.12 (95% CI of 

0.004 to 0.25) using only PET measures, and 0.36 (95% CI 
of 0.20 to 0.50) using both CSF and PET measures. Simi-
lar to our classification results, the best predictive perfor-
mance was achieved using only baseline CSF measures.

Predicting PET-based future A β-positivity from CSF 
and PET baseline measures
We continued our investigation by predicting PET-based 
future A β-positivity on baseline CSF and PET measures. 
Again, we limited the PET-based dataset to individuals 
with available CSF baseline measures, resulting in a data-
set of 161 A β-Stables and 45 A β-Converters, and 72 A β
-positive as auxiliary data (for using as A β-Converters 
only in the training phase to balance dataset). We devel-
oped a classification model to predict future PET-based 
A β-positivity with three different feature combinations: 
The first model was trained based on CSF measures only, 
the second model was based on PET measures only, and 
the third model was based on both CSF and PET meas-
ures. The results are shown in Fig. 5b–e and Fig. S7. Sur-
prisingly, the use of baseline CSF measures to predict 
future PET-based A β-positivity resulted in improved 
performance compared with the use of baseline PET 
measures, the average AUC value increased from 0.79 
(95% CI of 0.72 to 0.85) to 0.85 (95% CI of 0.78 to 0.91) 
(p-value = 0.18). In addition, a combination of CSF and 
PET measures provided similar performance to the use of 
CSF measures alone, with an average AUC value of 0.83 
(95% CI of 0.76 to 0.88). The p-value was 0.049 between 
the model based on PET measures alone and the model 
with the combination of PET and CSF measures.

To predict changes in global SUVR, first, we selected 
353 individuals from the PET regression-cohort who had 
available CSF baseline measures. We then removed 10 
individuals as outliers, with the changes in global SUVR 
less than − 0.1. Finally, the remaining 343 individuals 
were used for predicting the changes in global SUVR with 
different feature combinations. The results are shown in 
Fig.  5b and Fig. S7. Unlike the classification results, the 
average correlation value was rather near to one another 
in all three different feature combinations. The average 
correlation value was 0.30 (95% CI of 0.22 to 0.39) with 
CSF measures alone, 0.32 (95% CI of 0.22 to 0.42) with 
PET measures alone, and 0.33 (95% CI of 0.22 to 0.43) 
with CSF and PET measures combined.

We further investigated the contribution of different 
CSF and PET measures in both classification and regres-
sion models. Figure 5d and e show the coefficient values 
of the 20 variables with the highest importance calcu-
lated by taking the mean of the absolute values of the 
coefficients. Notably, A β 42 was the most important vari-
able in both classification and regression models (Fig. 5d 
and e). Furthermore, the two important CSF measures, 
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i.e., A β 42 and TAU, rank among the top ten most impor-
tant variables. These findings demonstrate the impor-
tance of CSF measures in predicting PET-based future 
A β-positivity and also provide an explanation of why the 
classification model based on baseline CSF measures out-
performed the model based on baseline PET measures.

It is essential to emphasize that, in utilizing baseline 
PET measures, we incorporated all available regional 
SUVR values, even though some may not provide signifi-
cant information. In contrast, CSF consists of only three 
main features. This distinction may influence the sig-
nificance of the contribution of PET global SUVR to the 

Fig. 5 Predicting future CSF-based and PET-based A β-positivity from baseline CSF and PET measures: a Bar plots showing the average AUC 
and average correlation score across 10 computation runs for predicting future CSF-based amyloid positivity, with 95% confidence intervals error 
bars. b Bar plots showing the average AUC and average correlation score across 10 computation runs for predicting future PET-based amyloid 
positivity, with 95% confidence intervals error bars. c Distribution of probability score derived by RLR for PET-based prediction in A β-Stable and A β
-Converter groups with CSF and PET baseline measures. d, e Heatmap of coefficient values across 10 runs of 10-fold CV (100 models) for PET-based 
classification model (d) and pet-based regression model (e), with the bar graphs showing the importance of each predictor calculated by the mean 
of the absolute value of regression coefficient. The regression model is designed for predicting the difference between future and baseline global 
SUVR measures
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modeling process compared to the contribution of CSF 
A β 42 measure. To assess the importance of the baseline 
global SUVR measure in predicting PET-based A β-posi-
tivity, we devised two distinct classification models. The 
first exclusively featured PET global SUVR and CSF A β 42 
as predictors, while the second included all CSF meas-
ures (Aβ42, PTAU, and TAU) alongside five PET baseline 
SUVR measures-specifically, global SUVR (SUMMA-
RYSUVR_WHOLECEREBNORM) and four additional 
SUVR measures used in creating the global SUVR 
(FRONTAL_SUVR, CINGULATE_SUVR, PARIETAL_
SUVR, TEMPORAL_SUVR). The results are shown in 
Fig. S8. The AUC of the first model with CSF A β 42 and 
PET global SUVR as predictors was 0.81, and the AUC 
for all three CSF measures and five PET SUVR measures 
was 0.82. This indicates a slight decrease compared to 
using all regional SUVR and CSF measures (AUC: 0.83). 
Although AUC performance was similar across all three 
models, an examination of sensitivity revealed that the 
model with only two predictors exhibited relatively low 
sensitivity and balanced accuracy (Fig. S8c). However, the 
model with five SUVRs and CSF measures demonstrated 
performance comparable to the model incorporating CSF 
measures with all SUVR measures. Investigating the con-
tribution of CSF A β 42 and PET global SUVR measures, 
when only five SUVRs are included, demonstrates that 
the importance of A β 42 and global SUVR is nearly the 
same (Fig. S8a).

Additionally, we compared the performance of a model 
with only five SUVRs against a model with all regional 
SUVR measures. The AUC was 0.79 when considering 
all baseline regional SUVRs, and 0.73 when using only 
five SUVRs. These findings suggest that if CSF baseline 
measures are not available during the learning process, 
the inclusion of all SUVR measures improves the per-
formance. Given the application of regularized logistic 
regression, we anticipate the model to adeptly select the 
most significant information from all available predic-
tors, even when all regional SUVRs are employed (Fig. 
S8c).

MCI/dementia conversion prediction
We validated the relevance of our A β-positivity predic-
tion models, both CSF-based and PET-based models, by 
applying them to an independent dataset (Tables 2 and 3) 
to predict changes in clinical status from cognitively nor-
mal to MCI/dementia or from MCI to dementia. The pre-
dictors were demographics, APOE4, neuropsychological 
test results and MRI biomarkers (the model trained in 
the “ Predicting PET and CSF A β-positivity in A β-nega-
tive individuals from multimodal data excluding PET and 
CSF baseline measures” section).

We trained a model for predicting CSF-based future 
A β-positivity using all available participants (Fig.  1a, 
Table  1) and used it to classify CN-Stable vs. CN-Con-
verter groups, as well as MCI-Stable vs. MCI-Converter 
groups. We next repeated the process for the PET-based 
model. The results are shown in Fig.  6. The CSF-based 
model performed quite well, achieving an AUC of 0.76 
(95% CI of 0.68 to 0.83) for MCI/dementia conversion 
prediction in the CN group and an AUC of 0.89 (95% CI 
of 0.86 to 0.93) for dementia conversion prediction in the 
MCI group. However, the PET-based model had lower 
performance, with an AUC of 0.60 (95% CI of 0.51 to 
0.69) for classifying CN-Stables vs. CN-Converters and 
an AUC of 0.72 (95% CI of 0.67 to 0.78) for classifying 
MCI-Stables vs. MCI-Converters.

Given that neither the CSF-based nor the PET-based 
model was specifically designed for classifying CN-Sta-
bles vs. CN-Converters/MCI-stables vs. MCI-converters, 
and that both models used basic and noninvasive data 
(demographics, APOE4, cognitive, and MRI), the CSF-
based model performed exceptionally well for the MCI/
dementia conversion prediction in CN and MCI groups, 
while the PET-based model performed well only in the 
MCI group. However, in the CN group, the PET-based 
model failed to predict conversion to MCI/dementia.

Discussion
Determining A β-status is crucial for the prescription of 
amyloid-targeted treatments in the future. This study 
aimed to predict conversion to A β-positivity in A β
-negative individuals using data that is widely available 
in clinical settings. To achieve this goal, we developed a 
classification model based on an RLR approach incorpo-
rating demographics, APOE4, neuropsychological tests, 
and MRI biomarkers. We categorized participants into 
A β-positive and A β-negative groups, based on CSF A β 42 
and PET global SUVR. Due to categorization inconsist-
encies [41], we conducted separate analyses with par-
ticipants classified as A β+/Aβ - based on CSF and PET 
biomarkers.

The selection of a suitable cutoff point for categoriz-
ing subjects into A β-positive and A β-negative groups is 
important in the prediction of A β-positivity in A β-nega-
tive individuals as it can impact the results of our analy-
sis. Particularly, in CSF-based grouping, the selection 
of the cutoff point is challenging due to the presence of 
various cutoff values in the existing literature [15, 16]. 
We decided to use the cutoff 880 pg/mL, a value estab-
lished from predictions made in the BioFINDER study, 
independently from the ADNI dataset. The selection of 
a cutoff point determined in independent data is statisti-
cally appropriate. Additionally, our choice of the 880 pg/
mL cutoff, as opposed to larger cutoff values, allowed us 
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to include a larger number of participants in the A β-Con-
verter group. However, to confirm the reliability of our 
classification results and to eliminate any potential bias 
arising from the cutoff point for categorizing participants 
into A β+/Aβ−  groups, we conducted regression analy-
ses that were aligned with our classification experiments 
for predicting future CSF A β (Aβ42) or PET A β (global 
SUVR) values via a ridge linear regression. These steps 
collectively contribute to the robustness and credibility of 
our study’s findings.

In our analyses, we demonstrated that features from 
multiple modalities, including demographics, neuro-
physiological scores, APOE4, and MRI biomarkers, can 
model the progression to A β-positivity detected by either 
CSF or PET biomarkers. Interestingly, our findings indi-
cate that utilizing CSF A β 42 for participant categoriza-
tion resulted in more accurate predictions of future A β
-positivity compared to PET global SUVR. Also, the CSF-
based model benefited from additional features, whereas 
the accuracy of the PET-based model decreased with 
more features. In more detail, the AUC of CSF-based 
model increased from 0.72 with APOE and demograph-
ics as the features to 0.78 with all the features. However, 
the AUC of the PET-based decreased from 0.68 with 
APOE4 and demographics as the features to 0.61 to all 

the features. To comprehend the performance dispar-
ity between the PET-based and CSF-based models, we 
investigated the contributions of different data types in 
each model. We observed that cognitive scores and MRI 
biomarkers, along with APOE4 as the most important 
variable, strongly contribute to the CSF-based model. 
In contrast, in the PET-based model, the contribution of 
cognitive and MRI biomarkers was smaller, and the pri-
mary predictors were APOE4 and age.

It is essential to highlight that CSF A β 42 and PET 
global SUVR measures, utilized in defining A β-positivity, 
employ different mechanisms for detecting A β protein. 
PET imaging reveals the presence of amyloid plaques in 
the brain, whereas CSF analysis is associated with the 
clearance of amyloid from the brain. Low CSF amyloid 
levels may indicate inefficient clearance, leading to brain 
amyloid accumulation [42, 43]. Although we used the 
same ML framework for predicting future A β-positivity, 
direct comparison of the results is challenging. However, 
our findings suggest that predicting future CSF-based A β
-positivity is relatively easier compared to PET-based A β
-positivity. In a previous study, Jagust and Landau [44] 
explored the factors influencing the transition from A β
-negative to A β-positive, as determined by PET meas-
ures. Their findings indicated that age, baseline PET, 

Fig. 6 MCI/dementia conversion prediction in CN and MCI groups: a Boxplot of probability score derived by RLR for CSF-based and PET-based 
model for classification of stables vs converters in CN and MCI groups. b ROC curves of CN and MCI subjects classification to stable and converter 
groups using CSF-based and PET-based models, with AUC values and 95% confidence intervals
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and being a female APOE4 carrier were associated with 
an increased risk of conversion. Interestingly, in another 
study conducted by Elman et  al. [45], cognitive tests 
were found to predict conversion to A β-positivity, which 
was defined based on CSF and/or PET. The discrepancy 
between these findings can be understood based on the 
results of the current study, where prediction perfor-
mance improved by incorporating cognitive measures for 
CSF-based cohort but not in the PET-based cohort.

Determining A β-positivity using CSF biomarker can 
be done either based on A β 42 levels and the A β42/Aβ 40 
ratio. In this study, we defined A β-positivity solely based 
on A β42, as the A β 40 measure was only available for a 
small number of participants. However, recent studies 
have emphasized the relevance of the A β42/Aβ 40 ratio 
in defining A β-positivity using CSF biomarker [46], as it 
exhibits a stronger correlation with PET-based A β meas-
ure compared to A β 42 alone. Moreover, the correlation 
between the ratio of A β42/Aβ 40 and global SUVR is 
higher than the correlation between A β 42 and the global 
SUVR measure in ADNI data. We speculate that utiliz-
ing the A β42/Aβ 40 ratio for predicting CSF-based A β
-positivity may yield results that align more closely with 
PET-based predictions. Nevertheless, due to the limited 
number of available samples, we cannot conduct experi-
ments to confirm this hypothesis.

Previous studies have primarily focused on detecting 
A β-positivity at the time of the study [47–51] (baseline 
prediction). These studies have employed either machine 
learning algorithms or statistical analyses to identify 
A β-positivity at baseline and explore the relationships 
between cognitive measures, various biomarkers, and A β
-positivity. For example, Palmqvist et al. [47] developed a 
model utilizing demographics, cognitive tests, white mat-
ter lesions, APOE, and plasma biomarkers (Aβ42/Aβ40, 
tau, and neurofilament light chain) to detect A β-positiv-
ity at baseline. Their model achieved an AUC of 0.80-0.82 
when trained on BIOFINDER dataset [48, 52] and vali-
dated on ADNI data. Similarly, another study by the same 
group [48], detected baseline A β-positivity using demo-
graphic, APOE, and cognitive information and achieved 
an AUC of 0.65 in cognitively healthy individuals. How-
ever, we are aware of only two studies that have focused 
on predicting future A β-positivity [12, 45]. The first 
study, by Elman et  al. [45], examined the association of 
baseline cognitive measures with progression to A β-posi-
tivity in A β-negative individuals. The second study, by 
Park et al. [12], employed machine learning algorithms to 
predict future A β-positivity in A β-negative individuals. 
In Park et al. [12] study, they used a PET biomarker for 
subject classification in A β+/Aβ - groups and developed 
a classifier with baseline age, gender, APOE4 genotype, 
and PET SUVR measures in ADNI data. They achieved 

a cross-validated AUC of 0.67 using basic demographic 
and genetic factors, which improved to 0.84 when includ-
ing PET SUVR measures. Our work has a similar objec-
tive to the study by Park et  al. [12], but we focused on 
widely available non-invasive measures to predict future 
A β conversion. Moreover, a key characteristic of our 
study was to assess the future predictability of A β-posi-
tivity determined based on either CSF and PET biomark-
ers whereas Park et al. [12] only considered a PET-based 
definition.

We validated the relevance of our prediction models 
for future A β-positivity in an independent dataset com-
posed of separate ADNI participants, predicting clini-
cal status changes from CN to MCI/dementia or from 
MCI to dementia. The CSF-based model performed well, 
achieving an AUC of 0.76 for MCI/dementia conversion 
prediction in CN individuals and an AUC of 0.89 for 
the dementia conversion prediction in MCI individuals. 
However, the PET-based model performed worse in pre-
dicting conversion, reaching an AUC of 0.60 for CN to 
MCI/dementia conversion and an AUC of 0.72 for MCI 
to dementia conversion. The CSF-based model’s excellent 
performance in predicting MCI/dementia conversion in 
a completely independent dataset is intriguing, indicating 
its potential for detecting AD/dementia-related changes 
at an early stage. Although the model was not specifi-
cally designed to classify CN/MCI-Converter versus CN/
MCI-Stable groups, the CSF-based model demonstrated 
strong performance comparable to existing studies 
designed for such classification tasks [53–55].

We analyzed the use of baseline CSF and PET measures 
for predicting future A β-positivity. Including baseline 
scores significantly improved the performance of the pre-
diction models. Notably, when baseline CSF/PET meas-
ures were available, the addition of other data types such 
as cognitive scores and MRI biomarkers contributed very 
little value. Moreover, utilizing baseline CSF/PET meas-
ures enabled the prediction of the change/rate in A β 42 
and global SUVR values which are rather hard to model 
[56]. However, the invasive nature, high cost, and limited 
availability of CSF/PET measures restrict their usage. An 
alternative approach could be to predict future A β-posi-
tivity using predicted CSF and PET measures derived 
from other variables. This strategy could offer more 
robust insights, particularly when substituting less acces-
sible measures with more readily available or cost-effec-
tive options. A promising area for future research lies 
in exploring the prediction of PET and CSF values from 
blood measures, which are generally more accessible.

Moreover, we investigated the role of baseline CSF and 
PET measures in both predicting CSF-based future A β
-positivity as well as in predicting PET-based future A β
-positivity. Interestingly, baseline CSF measures showed 
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superior predictive ability for future PET-based A β-posi-
tivity compared to baseline PET measures. A closer look 
at the coefficient values in the PET-based model revealed 
that A β 42 made the greatest contribution to the model. 
Recent studies suggest that AD-related alterations are 
detectable earlier in CSF than in PET [57, 58], which may 
explain the superior performance of baseline CSF meas-
ures in predicting PET-based A β-positivity.

Our study has several limitations. First, the sample 
sizes were small due to our specific inclusion criteria, 
although the data came from one of the largest longitudi-
nal dementia-prediction cohorts (ADNI). To compensate 
for the small sample size, we evaluated our CSF-based/
PET-based models in an independent dataset for MCI/
dementia conversion prediction. Second, the sizes of A β
-Stable and A β-Converter groups were different, which 
we partially addressed by introducing auxiliary data for 
label balancing during model training. Third, the CSF-
based and PET-based analyses used different datasets, 
challenging direct performance comparison. To address 
this, we included an equal number of participants for 
CSF-based and PET-based model training to facilitate 
a fairer comparison. Fourth, we utilized a single ML 
approach to combine various data types and develop our 
models. While this approach worked well for CSF-based 
analyses, a more advanced approach may be needed for 
PET-based future A β-positivity prediction. Last, the 
models to predict future A β-positivity in A β-negative 
individuals were not evaluated on an independent data-
base. While the validation of the prediction models in 
an independent dataset composed of separate ADNI 
participants, predicting clinical status changes from CN 
to MCI/dementia or from MCI to dementia, provides 
a partial remedy, it does not completely overcome the 
limitation.

Conclusion
We developed ML-based models to predict future A β
-positivity in A β-negative individuals, determined based 
on either CSF or PET biomarkers. The CSF-derived 
dichotomization achieved better predictive performance 
(AUC = 0.78) compared to PET dichotomization (AUC = 
0.68). The discrepancy in performance may be attributed 
to the different mechanisms of A β detection and the dis-
cordance between the two biomarkers. Further research 
is required to understand this discrepancy. However, by 
using non-invasive measures including demographics, 
APOE4, neuropsychological scores, and MRI biomark-
ers, our CSF-based A β-positivity conversion prediction 
model performed well in identifying A β-Stables vs A β
-Converters with an AUC 0f 0.78, as well as in identifying 
CN-Converters vs. CN-Stables (AUC = 0.76) and MCI-
Stables vs. MCI-Converters (AUC = 0.89). These findings 

demonstrate the significance of neuropsychological and 
MRI biomarkers to detect the risk of conversion to AD, 
even in cognitively normal individuals. The detection 
may occur before current thresholds for A β-positivity are 
reached, providing an opportunity for early intervention.
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