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Abstract 

Background The use of structural and perfusion brain imaging in combination with behavioural information 
in the prediction of cognitive syndromes using a data-driven approach remains to be explored. Here, we thus exam-
ined the contribution of brain structural and perfusion imaging and behavioural features to the existing classification 
of cognitive syndromes using a data-driven approach.

Methods Study participants belonged to the community-based Biomarker and Cognition Cohort Study in Singa-
pore who underwent neuropsychological assessments, structural-functional MRI and blood biomarkers. Participants 
had a diagnosis of cognitively normal (CN), subjective cognitive impairment (SCI), mild cognitive impairment (MCI) 
and dementia. Cross-sectional structural and cerebral perfusion imaging, behavioural scale data including mild 
behaviour impairment checklist, Pittsburgh Sleep Quality Index and Depression, Anxiety and Stress scale data were 
obtained.

Results Three hundred seventy-three participants (mean age 60.7 years; 56% female sex) with complete data were 
included. Principal component analyses demonstrated that no single modality was informative for the classification 
of cognitive syndromes. However, multivariate glmnet analyses revealed a specific combination of frontal perfusion 
and temporo-frontal grey matter volume were key protective factors while the severity of mild behaviour impair-
ment interest sub-domain and poor sleep quality were key at-risk factors contributing to the classification of CN, SCI, 
MCI and dementia (p < 0.0001). Moreover, the glmnet model showed best classification accuracy in differentiating 
between CN and MCI cognitive syndromes (AUC = 0.704; sensitivity = 0.698; specificity = 0.637).

Conclusions Brain structure, perfusion and behavioural features are important in the classification of cognitive 
syndromes and should be incorporated by clinicians and researchers. These findings illustrate the value of using mul-
timodal data when examining syndrome severity and provide new insights into how cerebral perfusion and behav-
ioural impairment influence classification of cognitive syndromes.
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Background
There occurs significant heterogeneity in the presenta-
tion of pre-dementia and dementia stages with some 
individuals showing cognitive impairment, while others 
present with behavioural impairment. Both cognitive and 
behavioural phenotypes are related to changes in under-
lying brain structure and function including grey matter 
(GM) loss and perfusion deficits [1–3]. Since individu-
als typically progress from cognitively normal (CN), to 
subjective cognitive impairment (SCI), mild cognitive 
impairment (MCI) and dementia stages, it is important 
to integrate cognitive and biomarker data from CN, SCI, 
MCI and dementia to afford reliable classification of the 
individual along this spectrum. Currently, the classifica-
tion of cognitive syndromes is largely carried out in clini-
cal settings using neuropsychological assessments and 
structural MRI, where available. In this regard, under-
standing the clustering of multimodal factors in the 
classification of cognitive syndromes along the demen-
tia spectrum is imperative for a more holistic view of 
which factors help distinguish between these syndromes. 
Additionally, detecting at-risk individuals, especially in 
asymptomatic early stages will allow for timely interven-
tion and potentially delay progression along the dementia 
spectrum.

The contribution of MRI only or cognition only to the 
classification of subjects has also been assessed previ-
ously. Characterisation of heterogeneity in brain ageing, 
dementia and MCI have largely used data-driven cluster-
ing and neuroinformatic techniques [4–6]. These meth-
ods provide an unbiased method to classify syndromes 
along the dementia spectrum. Indeed, studies have shown 
how cortical thickness and grey matter volume (GMV) 
features by themselves or in combination with functional 
connectivity features can be helpful in the classification 
of dementia subtypes and MCI [6–9]. Prior findings have 
also illustrated separation between MCI and SCI using 
structural MRI [10]. Separately, studies have also exam-
ined comprehensive neuropsychological data and fluid 
biomarkers in phenotyping dementia subtypes [11, 12]. 
However, while some studies have assessed the combina-
tion of structural MRI and neuropsychological testing in 
subject categorisation, there exists a lack in multimodal 
subtyping studies [13]. There is thus a need for the devel-
opment of multimodal fingerprints that combine data 
from different modalities including MRI, fluid biomark-
ers as well as neuropsychological performance to help 
improve the classification of dementia-related syndromes 
and sub-groups [14].

Some studies have examined the role of health-related 
behaviours such as diet, physical activity, smoking status 
and alcohol consumption on cognition and relative risk 
of dementia or cognitive performance [15, 16]. However, 

these behaviours tend to co-occur and thus their indi-
vidual influence on cognition cannot be clearly defined. 
Similarly, some community-based studies have suggested 
that a combination of physical activity levels, smoking 
status and diet can allow for the identification of sub-
groups at increased risk of dementia and may in turn 
benefit more from specific interventions [13]. Thus, there 
is merit in the assessment of combinations of factors in 
the classification of dementia-related syndromes. This 
approach will allow for the identification of groups of 
individuals that may benefit from specific interventions.

Findings do indicate that the use of multimodal imag-
ing involving both structural as well as functional brain 
imaging is better at predicting dementia-related syn-
dromes compared to single modality data alone [17]. 
In this regard, the use of structural and perfusion brain 
imaging in combination with behavioural information in 
the classification of cognitive syndromes remains to be 
explored. Moreover, employing data-driven clustering 
and multivariate feature selection methods using gener-
alized linear models in a community-based cohort may 
provide important insights into the factors that contrib-
ute most to cognitive disorders in the community. This 
may in turn help assist identification of at-risk subgroups 
in a timely manner.

To address these gaps, we sought to examine the con-
tribution of multimodal brain structural and perfusion 
imaging data and behavioural features to the classi-
fication of cognitive syndromes using a data-driven 
approach. We employed multivariate generalised linear 
models and aimed to evaluate which combination of fea-
tures among brain structure, brain perfusion and behav-
iour contributed to the classification of CN, SCI, MCI 
and dementia syndromes.

Methods
Participants
Participants were recruited at the Dementia Research 
Centre (Singapore) as part of the ongoing Biomarker 
and Cognition Study. Three hundred seventy-three par-
ticipants met the criteria for the current objective and 
were included. Inclusion criteria comprised the presence 
of a cognitive concern among individuals from the com-
munity aged between 30 and 95, inclusive of limits. A 
research diagnosis was assigned to each participant based 
on their cognitive performance. Participants were classi-
fied as cognitively normal if they had a CDR = 0, < 5 on 
the subjective memory complaints questionnaire and > 
26 on the MoCA [18] Mean performance of CN individu-
als was calculated for the various cognitive domains listed 
earlier as part of the neuropsychological assessment. A 
participant with performance > 1.5 standard deviations 
below the CN mean on any cognitive domain and having 
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no functional impairment was assigned as mild cognitive 
impairment, as per Petersen’s and National Institute on 
Aging-Alzheimer’s Association criteria [19, 20] Partici-
pants with CDR = 1 or more were assigned as dementia. 
Participants with subjective symptoms but not meeting 
the criteria for MCI and having no functional impair-
ment were classified as SCI. Based on this criterion, out 
of the 373 subjects included in the study, 80 were classi-
fied as CN, 97 were classified as SCI, 192 were classified 
MCI and 4 met the criteria for dementia. Key exclusion 
criteria included illiteracy, diagnosis of major psychotic, 
psychiatric, neurological disorders and serious systemic 
disease.

Neuropsychological and behavioural assessments
Trained research psychologists administered the follow-
ing global cognitive tests: the Clinical Dementia Rating 
Scale [21], Montreal Cognitive Assessment [22], Visual 
Cognitive Assessment Test [23] and detailed neuropsy-
chological test battery including tests for episodic mem-
ory [24–26], executive function [27, 28], language [22, 
26], processing speed [28, 29] and visuospatial function 
[24, 28]. Participants were also administered behavioural 
questionnaires including the Mild Behaviour Impair-
ment–Checklist(MBI-C) [30], Pittsburgh sleep quality 
index (PSQI) [31] and Depression Anxiety and Stress 
Scale(DASS) [32]. The MBI-C checklist domains of Inter-
est, Mood, Control, Social and Beliefs were collected.

Neuroimaging acquisition
All participants underwent whole-brain MRI scans 
using a 3T Siemens Prisma Fit scanner (Siemens Health-
ineers, Erlangen, Germany). The T1-weighted accel-
erated magnetization-prepared rapid gradient-echo 
sequence comprised the following parameters: rep-
etition time = 2000 ms, echo time = 2.26 ms, inversion 
time = 800 ms, flip angle = 8°, matrix size = 256 × 256 and 
voxel size = 1.0 × 1.0 × 1.0  mm3. Additionally, 2D pulsed 
arterial spin labelling (ASL) data was also acquired from 
all participants. Scan parameters included: TR 2500 ms, 
T2 11 ms, TI = 1800 ms, bolus duration = 700 ms, flow 
limit = 100.0 cm/sec, field of view 256 mm, gap = 20.9 
mm, distance factor 25%, flip angle 90°, 91 measurements 
(1 calibration M0, 45 label, 45 control) with voxel size 4.0 
× 4.0 × 8.00 mm, matrix size = 64 × 64.

Neuroimaging pre‑processing and derivation of features
We used the Computational Anatomy Toolbox (http:// 
dbm. neuro. uni- jena. de/ cat12/) in Statistical Parametric 
Mapping (http:// www. fil. ion. ucl. ac. uk/ spm/), to process 
the T1 images for derivation of regional cortical GMV 
using the Automated Anatomical Labelling atlas [33]. 
All 3D T1-weighted MRI scans were normalised using 

an affine transformation followed by non-linear reg-
istration and corrected for bias field inhomogeneities. 
Images were then segmented to derive participant-level 
grey matter (GM), white matter, and cerebrospinal fluid 
components [33] The Diffeomorphic Anatomic Regis-
tration Through Exponentiated Lie algebra algorithm 
normalised the segmented scans into the standard MNI 
space to provide better precision in spatial normalisation 
to the template [34] Subsequently, the modulation step 
performed a non-linear deformation on the normalised 
segmented images which provides a comparison of the 
absolute amounts of tissue following correction for indi-
vidual differences in brain size. All obtained segmented, 
modulated, and normalised grey matter images were 
then smoothed using an 8-mm full-width-half-maximum 
isotropic Gaussian smoothing kernel and the region-level 
grey matter volumes were derived using Computational 
Anatomy Toolbox functions covering the left and right 
cortical hemispheres of the brain.

ASL post-processing was performed using FSL’s Bayes-
ian Inference for ASL MRI (BASIL) toolbox [35]. The 
acquired ASL scans were motion corrected using FSL’s 
MCFLIRT and calibrated based on the first unlabelled 
volume on the ASL scan. Spatial regularisation was 
applied prior to cerebral blood flow (CBF) calculation. 
CBF was quantified using the Buxton ASL kinetic model 
based on recommendations in the ASL white paper [35–
37]. The generated CBF images were corrected for par-
tial volume effects using BASIL’s adaptive spatial prior 
approach [38]. Here, T1-weighted images were registered 
to the ASL calibration scan using FSL’s FLIRT. The same 
transformation was applied to register the high-resolu-
tion partial volume maps to the ASL resolution. Partial 
volume corrected GM perfusion maps and GM CBF 
mean values were recorded for voxels with GM > 10%. 
For the derivation of the regional grey matter perfusion 
values, the GM segmentation maps were thresholded at 
80% and the Harvard-Oxford cortical and subcortical 
atlas was applied to derive perfusion values in grey mat-
ter regions of interest. For this, standard space regions 
were transformed to native ASL space and voxels with a 
probability fraction > 0.5 were considered to lie within 
a region. At least 10 voxels must be found for perfusion 
values to be quantified in regions encompassing the GM 
cortical structures in ml/100 g/min.

Statistical analysis
Features
Behavioural data features comprised total MBI-C score 
and five domains of Interest, Mood, Control, Social 
and Beliefs as well as DASS components of Depression, 
Anxiety, Stress and scores on the PSQI scale. MRI brain 
features comprised left and right cortical regions to 

http://dbm.neuro.uni-jena.de/cat12/
http://dbm.neuro.uni-jena.de/cat12/
http://www.fil.ion.ucl.ac.uk/spm/
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maximise overlap between GMV and perfusion regions. 
Hippocampal subcortical areas were included in view of 
their specific contribution to cognitive processes. 

GMV regions included the left/right precentral gyrus, 
left/right superior frontal gyrus, left/right middle frontal 
gyrus, left/right inferior orbitofrontal, left/right medial 
superior frontal gyrus, left/right medial orbitofrontal, 
left/right insula, left/right middle cingulate cortex, left/
right posterior cortex, left/right hippocampus, left/right 
parahippocampal gyrus, left/right lingual gyrus, left/
right superior occipital gyrus, left/right inferior occipi-
tal gyrus, left/right fusiform gyrus, left/right postcen-
tral gyrus, left/right superior parietal gyrus, left/right 
supramarginal gyrus, left/right angular gyrus, left/right 
precuneus, left/right superior temporal gyrus, left/right 
superior temporal pole, left/right middle temporal gyrus, 
left/right middle temporal pole.

ASL GM perfusion regions included left/right hip-
pocampus, precuneus, posterior cingulate cortex, medial 
temporal, angular gyrus, insula, temporal pole, posterior 
superior temporal pole, posterior middle temporal, tem-
poro-occipital middle temporal, superior parietal, ante-
rior supramarginal, posterior supramarginal, superior 
lateral occipital, inferior lateral occipital, paracingulate, 
lingual, posterior temporal, temporo-occipital fusiform, 
occipital fusiform, occipital pole, frontal pole, superior 
frontal, middle frontal, precentral gyrus, postcentral 
gyrus, medial frontal, orbitofrontal, anterior cingulate, 
subcallosal.

Since neuropsychological test scores were utilised to 
establish participant research diagnosis, all neuropsycho-
logical test scores were excluded from the set of predic-
tors to avoid circularity.

For overall sample characteristic comparisons, group 
comparisons for continuous variables were carried out 
using ANOVA with Tukey’s post hoc test. Group com-
parisons for categorical variables were carried out using 
chi-squared tests.

Principal component analysis (PCA) was performed 
for each of the categories of parameters to gain an under-
standing of the contribution of the parameters towards 
predicting cognitive syndromes as well as a general qual-
ity control check. Parameter readings used for the PCA 
were standardised and missing values assigned 0 which is 
the average value.

Kruskal-Wallis tests followed by Dunn’s post hoc test-
ing were done to identify parameters which were associ-
ated with the cognitive syndromes of CN, SCI, MCI and 
dementia.

Glmnet was used to generate a multivariate linear 
regression model predictive of cognitive syndromes. The 
cognitive syndromes were assigned a value of 0 (CN), 1 
(SCI), 2 (MCI) and 3 (dementia) for the purposes of the 

regression as an indicator of the severity of the condition. 
Parameters which are numeric in nature with a miss-
ing percentage less than 20% were used. The data was 
standardised prior to use and missing values assigned 0 
which is the average value. 10-fold cross-validation was 
done for model selection and the final model presented. 
Model performance was assessed using a Kruskal-Wallis 
test of the model scores against the cognitive syndromes 
to determine whether the model scores are significantly 
different between cognitive syndromes. Pairwise com-
parisons of the model scores for the cognitive syndromes 
were also done using the receiver operator characteristics 
(ROC) curve. The thresholds for the ROC were deter-
mined as the best optimal combination of sensitivity and 
specificity and the area under the curve (AUC) reported.

All statistical analyses were conducted using R 4.2.2 
with RStudio (2022.07.2). Statistical significance was 
deemed when the P values were less than 0.05. Multiple 
testing correction was performed using the method of 
Benjamini and Hochberg.

Results
The analytic sample comprised 373 participants with 
cognitive, behavioural and neuroimaging data and cat-
egorised as CN, SCI, MCI and dementia. Overall, the 
groups differed in their age at visit, sex, education years 
and global cognition scores (Table 1) with the dementia 
group being the oldest and with the least education years.

Principal component analyses across regional grey matter 
volume, regional grey matter perfusion and behavioural 
data
Principal component analysis was performed for behav-
ioural data, regional GMV and regional perfusion. 
Dimensionality reduction in all data types did not reveal 
difference in data clustering across the different cogni-
tive syndromes, suggesting that no principal components 
within each data type distinguished between cognitive 
syndromes (Fig. 1A–C).

We carried out Kruskal-Wallis analysis and Dunn’s 
post-hoc tests to understand which parameters were able 
to differentiate between cognitive syndromes. Significant 
results are reported at FDR-corrected p < 0.10 threshold 
in Table  2. Specifically, a few parameters representing 
behaviour measures, GMV and GM perfusion in cortical 
regions of interest, provided preliminary indication that 
these features may be useful in the classification of cogni-
tive syndromes which led to further Glmnet testing.

Multivariate generalized linear regression
We used glmnet to identify a set of parameters for the 
classification of cognitive syndromes and differenti-
ate between CN, SCI, MCI and dementia (Fig.  2A–B). 
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Higher left and right hippocampal volume, right infe-
rior fronto-orbital gyrus, left middle cingulate cortex 
and left supramarginal gyrus GMV comprised key pro-
tective factors against worsening cognitive syndromes. 
Additionally, higher frontal pole and middle frontal gyrus 
perfusion comprised key protective factors against wors-
ening cognitive syndromes. On the other hand, higher 
MBI-C interest domain scores and global PSQI score 
indicated worse behaviour and sleep quality, respectively 
and were risk factors for worsening cognitive syndromes.

Kruskal-Wallis tests indicated a large difference 
between model scores with a step-wise increase across 
CN, SCI, MCI and dementia groups (p < 0.001; Fig. 2C). 
Post hoc Dunn’s test indicated that pair-wise differences 
in model scores were especially prominent between CN 
vs MCI (p < 0.001), CN vs dementia (p = 0.01), SCI vs 
MCI (p < 0.001) and SCI vs dementia (p = 0.026). Model 
performance did not significantly differ between CN vs 
SCI and MCI vs dementia.

Calculation of model prediction accuracy in distinguishing 
between cognitive syndromes
To assess model prediction accuracy, we ran a series of 
ROC analyses to identify the best threshold (best com-
bination of sensitivity and specificity) for the model 
score and then used this threshold to compute the per-
formance metrics. This analysis showed an AUC of 0.662 
(sensitivity = 0.594; specificity = 0.675; Fig.  3A) for the 
classification of CN versus any other cognitive syndrome. 
For the classification of MCI vs CN, the ROC showed 
an AUC of 0.704 (sensitivity = 0.698; specificity = 0.637; 
Fig.  3B). For the classification of MCI vs SCI, the ROC 
showed an AUC of 0.638 (sensitivity = 0.719; specific-
ity = 0.505; Fig.  3C). After grouping of CN + SCD and 
MCI + dementia and classification of either of these syn-
dromes, the model showed an AUC of 0.671 (sensitivity 
= 0.699; specificity = 0.571; Fig. 3D).

Discussion
This study examined the role of multimodal brain MRI 
and behavioural data in the classification of neurocogni-
tive syndromes comprising CN, SCI, MCI and dementia. 
In separate PCA analyses, no single modality was inform-
ative for cognitive syndrome classification. However, 
multivariate glmnet analyses revealed that a specific com-
bination of GM perfusion, GMV and behavioural impair-
ment provided crucial information for the discrimination 
between cognitive syndromes. Specifically, frontal per-
fusion and temporo-frontal GMV were key protective 
factors while the severity of MBI-C Interest sub-domain 
and PSQI sleep quality were key at-risk factors contribut-
ing to CN, SCI, MCI and dementia stages in a step-wise 
manner. Moreover, based on these results, the glmnet 
model showed best classification accuracy in differenti-
ating between CN and MCI. Our findings emphasise the 
need for multimodal information over unimodal data 
types in the understanding and classification of cognitive 
syndromes. The combination of biomarker data and cog-
nitive-behavioural data may be advantageous to improve 
the accuracy of cognitive syndrome classification.

The use of multivariate glmnet in our study enabled us 
to examine all possible combinations of GMV, perfusion 
and behavioural measures. Employing this approach, we 
were able to obtain the combination of high-performing 
features to discriminate between cognitive syndromes. 
Additionally, the combination of features picked by glm-
net indicated a step-wise increment in model score pre-
dictability in discriminating between CN, SCI, MCI and 
dementia. Such a multi-variate data-driven approach to 
assess the classification accuracy of cognitive syndromes 
enabled the identification of best-performing features, 
as observed in previous studies [39]. We found that 
GMV, perfusion and behavioural impairment variables 
carry useful information for the classification of cogni-
tive syndromes with high levels of accuracy, sensitivity 

Table 1 Participant demographics

Superscript letters indicate whether group mean was significantly different compared with aCN, bSCI and cMCI based on post-hoc comparisons (p<0.05) following 
one-way analysis of variance

Abbreviations: CN Cognitively normal, SCI Subjective cognitive impairment, MCI Mild cognitive impairment

Cognitively 
normal (n = 80)

Subjective cognitive 
impairment (n = 97)

Mild cognitive 
impairment (n = 
192)

Dementia (n = 4) p‑value

Age at visit, mean (SD) 56.9 (11.2) 58.1 (9.2) 63.3 (9.6)a,b 77.5 (11.2)a,b,c < 0.001

Sex, female (n, %) 51 (63.8) 64 (65.9) 91 (47.4) 2 (50) 0.01

Education years, mean (SD) 14.5 (3.1) 14.6 (2.7) 13.6 (3.8) 8.5 (5.9)a,b,c < 0.001

Visual Cognitive Assessment Test, mean (SD) 27.02 (2.3) 26.9 (2.3) 25.3 (3.7)a,b 17.5 (6.1)a,b,c < 0.001

History of diabetes (n, %) 9 (11.3) 9 (9.3) 36 (18.8) 0 (0) 0.09

History of hypertension (n, %) 15 (18.8) 22 (22.7) 55 (28.6) 2 (50) 0.19

History of hyperlipidemia (n, %) 25 (31.3) 34 (35.1) 91 (47.6) 1 (25) 0.03
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and specificity. Following further validation, this set of 
features can potentially be included in clinical settings 
to gain insights into cognitive syndrome severity and 
staging.

Our study provides novel insights into the role of 
GM perfusion as well as behavioural impairment in the 

classification of cognitive syndromes, in addition to pre-
viously reported GMV measures [4]. Indeed, population-
based studies have examined cerebral perfusion data, 
cross-sectionally and longitudinally to assess demen-
tia risk and cognitive decline [1]. These indicate that 
lower cerebral perfusion is associated with a higher risk 

Fig. 1 Principal component analyses for behavioural scores (A), regional grey matter volumes (B) and regional grey matter perfusion (C). Clustering 
of data across behavioural, grey matter volumes and grey matter perfusion did not differ across cognitive syndromes
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of dementia, which is in line with our findings indicat-
ing higher cerebral blood flow in frontal GM is protec-
tive against more severe stages of cognitive impairment 
[1]. Additionally, lower baseline perfusion was associated 
with accelerated cognitive decline, especially in indi-
viduals with greater small vessel disease involving white 
matter hyperintensity burden [1]. We have also shown 
previously that frontal lobe white matter hyperintensity 
burden relates to widespread GM atrophy in MCI [40]. 
Our findings of higher frontal perfusion being protec-
tive against more severe cognitive syndromes are thus an 
important addition to the current understanding of the 
contribution of cerebral perfusion to cognitive impair-
ment. Notably, prior studies point towards small vessel 
disease being an important factor in this relationship 
between cognitive performance and brain perfusion. 
However, how regional perfusion contributes to this rela-
tionship needs further comprehensive examination in 
future studies.

Our findings indicate that the combination of GMV, 
perfusion and behaviour was important not only in the 
classification of cognitive syndromes but also in the sep-
aration between SCI from MCI and dementia. In this 
regard, prior studies have utilised clustering approaches 
on structural MRI data to illustrate subtypes of SCI, 
involving no atrophy, diffuse atrophy and AD-like tem-
poral atrophy and their respective cognitive decline [10]. 
Additionally, recent studies have also highlighted the 
presence of behavioural features involving depressive 
symptoms in subtypes of SCI [41]. Certain trajectories 
of SCI may also be predictive of further decline to MCI 
and dementia [42]. Furthermore, the presence of MBI is 
thought to represent underlying neurodegenerative dis-
ease [43]. Indeed, performance on the MBI-C, along with 
the presence of SCI, has also been shown to be associ-
ated with a greater risk of cognitive decline and pro-
gression to dementia [44]. The presence of sleep deficits 
has also been shown to be associated with behavioural 
impairment as well as more severe SCI [45, 46]. Thus, our 

findings of temporal dominant GMV as a key protective 
factor and behavioural impairment as an at-risk feature 
of more severe cognitive impairment, both between SCI 
and MCI as well as SCI and dementia, add to the exist-
ing body of literature illustrating distinct signatures in 
SCI. Notably, the selection of frontal cerebral brain per-
fusion features in distinguishing between SCI from MCI 
and dementia provides additional novel insights to the 
understanding of underlying differences between cogni-
tive syndromes using a data-driven approach.

The strengths of this study include the use of compre-
hensive neuropsychological assessments for the estab-
lishment of research diagnosis. Additionally, participants 
are from a community-based cohort in Singapore, thus 
representing the larger proportion of MCI patients. 
Future directions will include validation of these features 
in larger samples to assess classification accuracy. Nota-
bly, prior studies have not combined the use of perfusion 
measures with GMV as well as behavioural performance 
in the classification of cognitive syndromes. This mul-
timodal approach in our study has thus illustrated how 
unimodal approaches may not be comprehensive in 
examining differences between early stages of cognitive 
impairment. In this regard, the use of glmnet has pro-
vided an unbiased and comprehensive means to assess 
multivariate feature combinations that are best at differ-
entiating between stages of cognitive impairment.

There are some limitations to this study. These 
include the small sample of subjects with demen-
tia due to the community-based nature of the study 
cohort. We included this group of participants to 
test and illustrate the degree of distinction along the 
entire cognitive impairment spectrum. The lack of a 
biomarker-based classification of our patients into AD 
and non-AD is also a limitation. However, given that 
this is a community-based cohort, we feel that the 
clinical-based classification of MCI and dementia is 
more reflective of real-life practice. Future studies will 
focus on increasing the pool of dementia participants 

Table 2 Parameters illustrating differences between cognitively normal, subjective cognitive impairment, mild cognitive impairment 
and dementia stages

Abbreviations: MBI-C Mild Behaviour Impairment - Checklist

Parameter Category FDR adjusted p‑value n Chi‑sq

Age Demographics < 0.001 373 39.23

Left hippocampal volume Grey matter volume 0.02 373 17.98

Right hippocampal volume Grey matter volume 0.07 373 13.91

Left middle cingulate cortex Grey matter volume 0.07 373 13.76

MBI-C control Behavioural survey 0.09 372 12.01

Precentral gyrus Grey matter perfusion 0.07 371 13.40

Middle frontal gyrus Grey matter perfusion 0.09 314 11.98
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Fig. 2 Glmnet analyses revealed a combination of regional grey matter volume, perfusion and behavioural scores as discriminative 
between cognitive syndromes. A Higher temporal, frontal and parietal grey matter volume and higher frontal perfusion were protective 
against worsening cognitive syndrome. Higher scores on the PSQI (worse sleep quality) and MBI-C Interest (worse behaviour) were associated 
with increased risk of more advanced cognitive syndromes. B Brain grey matter regions where increased grey matter volume and perfusion 
were protective against worsening cognitive syndrome. C Differences in glmnet model scores revealed significant differences between groups 
in a step-wise manner. Abbreviations: MBI-C, mild behaviour impairment checkline; PSQI, Pittsburgh sleep quality index; rHIP, right hippocampus; 
lSMG, left supramarginal gyrus; lMCC, left mid cingulate cortex; rIFGorb, right inferior fronto-orbital gyrus; lHIP, left hippocampus
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to further validate this set of features. Additionally, 
these results will need to be further validated in a lon-
gitudinal study to better assess the prediction accu-
racy of the selected features in distinguishing between 
cognitive syndromes. We did not assess the influence 
of vascular risk factors on the classification of cogni-
tive syndromes and cognitive decline, which will be a 
key aspect of future studies. Additionally, the use of 
a pulsed ASL image sequence due to scanner limita-
tions is a drawback in this study as it may involve a 
lower ASL signal-to-noise ratio compared to other 
ASL imaging sequences. Future studies will aim for the 
implementation of improved ASL sequences.

Conclusions
In conclusion, this study attempts to bring together mul-
tiple data modalities to identify features that would best 
classify cognitive syndromes from a cross-sectional com-
munity-based cohort. The generalized linear model anal-
yses identified fronto-temporal GMV and frontal GM 
perfusion as key protective factors against more severe 
stages of cognitive impairment. Concurrently, higher 
MBI-C interest domain and poorer sleep quality scores 
increased the risk of more severe cognitive impairment. 
This combination of features had the highest predic-
tion accuracy in distinguishing between CN, SCI, MCI 
and dementia. These findings indicate the value of using 

Fig. 3 ROC curves of pairwise comparisons of model scores between cognitive syndromes. A Cognitively normal versus other cognitive 
syndromes, B Cognitively normal versus mild cognitive impairment, C Subjective cognitive impairment versus mild cognitive impairment, D 
grouping of cognitively normal + subjective cognitive impairment versus mild cognitive impairment + dementia. Abbreviations: ROC, receiver 
operator characteristics; CN, cognitively normal; SCI, subjective cognitive impairment; MCI, mild cognitive impairment
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multimodal data when examining syndrome severity and 
provide new insights into how cerebral perfusion meas-
ures and behavioural impairment can influence the clas-
sification of cognitive syndromes.
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