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Abstract 

Introduction Optical coherence tomography angiography (OCT‑A) is a novel tool that allows the detection of retinal 
vascular changes. We investigated the association of macular vessel density (VD) in the superficial plexus assessed 
by OCT‑A with measures of cerebrovascular pathology and atrophy quantified by brain magnetic resonance imaging 
(MRI) in non‑demented individuals.

Methods Clinical, demographical, OCT‑A, and brain MRI data from non‑demented research participants were 
included. We analyzed the association of regional macular VD with brain vascular burden using the Fazekas scale 
assessed in a logistic regression analysis, and the volume of white matter hyperintensities (WMH) assessed in a mul‑
tiple linear regression analysis. We also explored the associations of macular VD with hippocampal volume, ventricle 
volume and Alzheimer disease cortical signature (ADCS) thickness assessed in multiple linear regression analyses. All 
analyses were adjusted for age, sex, syndromic diagnosis and cardiovascular variables.

Results The study cohort comprised 188 participants: 89 with subjective cognitive decline and 99 with mild cogni‑
tive impairment. No significant association of regional macular VD with the Fazekas categories (all, p > 0.111) and WMH 
volume (all, p > 0.051) were detected. VD in the nasal quadrant was associated to hippocampal volume (p = 0.007), 
but no other associations of macular VD with brain atrophy measures were detected (all, p > 0.05).

Discussion Retinal vascular measures were not a proxy of cerebrovascular damage in non‑demented individuals, 
while VD in the nasal quadrant was associated with hippocampal atrophy independently of the amyloid status.

Keywords Vessel density, Optical coherence tomography‑angiography, Cerebrovascular damage, Brain atrophy, 
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Introduction
Cerebrovascular (CV) damage is a very common con-
comitant pathology to Alzheimer disease (AD) in the 
elderly, as shown in autopsy studies [1, 2] and is also 
involved in the pathophysiology of cognitive impair-
ment [3]. In fact, the most frequent underlying cause of 
dementia in the elderly is mixed pathology (co-existence 
of AD and CV damage) [4]. Also, well-established cardio-
vascular risk factors such as high blood pressure, diabe-
tes mellitus, smoking, and obesity are associated with an 
increased risk of developing AD [5].

The brain shares with the retina several developmen-
tal, functional, and pathophysiological features. Both are 
connected through bundles of neuronal axons forming 
the optic nerve and also blood vessels [6]. Related to the 
latter, the inner blood-retinal barrier is an analog of the 
blood–brain barrier [7]. Retinal capillary density differs 
regionally, in parallel to that in the brain, being greatest 
in the macula, while the periphery of the retina is almost 
avascular [8]. The retinal capillary network is organized 
in two distinct beds: the superficial plexus at the level of 
the ganglion cell layer, and the deep plexus at the outer 
plexiform layer [9].

The retinal microvasculature can be directly assessed 
in vivo using Optical Coherence Tomography Angiogra-
phy (OCT-A), while this is not possible for brain vessels 
through brain magnetic resonance imaging (MRI), thus 
the retina is considered to be “a window into the brain”. 
CV pathology usually remains undetected until signifi-
cant damage has occurred and causes symptoms that 
warrant performance of brain imaging, while retinal vas-
culopathy may be identified non-invasively by OCT-A 
imaging early in the disease process. OCT-A obtains 
high-resolution images of the retina based on backscat-
tered light from its neurosensory and vascular tissues, 
and it allows the visualization of retinal vascular abnor-
malities such as microaneurysms, neovascularization, 
vascular non-perfusion, reduced vascular density (VD), 
and enlarged foveal avascular zone (FAZ) [10]. OCT-A 
obtained the U.S. Food and Drug Administration (FDA) 
approval in 2016 and in these past few years it has been 
used to evaluate a spectrum of ocular vascular diseases 
including diabetic retinopathy, retinal venous occlusion, 
uveitis, retinal arterial occlusion, and age-related macular 
degeneration, among others [10]. Growing evidence indi-
cates that microvascular retinal changes could be mark-
ers of CV, neurodegenerative, and psychiatric diseases as 
well. In particular, in the field of cognitive impairment, 
changes in retinal vascular network geometry have been 
correlated with worse cognitive functioning [11], and 
several retinopathy signs have been associated with vas-
cular and AD dementia [11, 12]. Also, several OCT-A 
quantitative retinal measures, such as VD and the size of 

the FAZ, have been investigated, pointing to a retinal vas-
cular loss in mild cognitive impairment (MCI) and AD 
dementia patients compared to healthy controls [13–19].

Thus, OCT-A is an emerging area of research in the 
field of novel biomarkers for cognitive decline and offers 
an exceptional opportunity to assess non-invasively both 
the retinal and also the brain microvasculatures.

In the present study, we explored OCT-A and brain 
MRI data from 188 non-demented participants from the 
Neuro-ophthalmology Research at Fundació ACE (NOR-
FACE) cohort. Our main goal was to assess whether 
there was an association between retinal vascular dam-
age (quantified as macular VD in the superficial plexus 
by OCT-A) and brain vascular damage (quantified as the 
Fazekas scale and the volume of white matter hyperin-
tensities (WMH) by brain MRI). Additionally, we aimed 
to assess (1) the association between macular VD and 
several brain atrophy measures and (2) the influence of 
the amyloid status (+ / −) measured by positron emission 
tomography (PET) in the association of retinal vascular 
damage with brain vascular and atrophy measures. Our 
hypothesis was that retinal vascular measures are a proxy 
of CV damage and thus OCT-A could be used a surro-
gate marker of CV pathology, regardless of the presence 
of brain amyloidosis.

Materials and methods
Study subjects
The Neuro-Ophthalmology Research at Fundació ACE 
(NORFACE) cohort was founded in 2014 to investigate 
retinal biomarkers of AD and examine the relationship 
between retinal changes and different types of neuro-
degenerative disorders [20]. In the present study, we 
included non-demented participants from the FACEHBI 
[21] and BIOFACE [22] research cohorts at Ace Alzhei-
mer Center Barcelona with a diagnosis of either Subjec-
tive Cognitive Decline (SCD) [23] or MCI [24]. FACEHBI 
is a longitudinal observational study with the goal of 
investigating the pathophysiology of preclinical AD and 
the role of SCD as a risk marker for the future develop-
ment of cognitive impairment [21]. For the present study, 
data from FACEHBI 5th follow-up visit (v5) were ana-
lyzed. BIOFACE is a longitudinal observational study 
focused on the analysis of novel biomarkers (including 
plasma-derived exosomes) in early-onset MCI patients 
[22]. For the present study, data from BIOFACE baseline 
visit (v0) were analyzed.

The cognitive status of all participants was assessed 
using the Neuropsychological Battery of Fundació ACE 
(NBACE) [25, 26]. NBACE is a brief, comprehensive and 
easy to administer test battery to detect cognitive impair-
ment in the adulthood that covers the following cognitive 
domains: processing speed, orientation, attention, verbal 
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learning and memory, language, visuo-perception, praxis, 
and executive functions. Participants classified as SCD 
presented cognitive complaints, a completely normal 
performance in all subtest of NBACE according to age 
and years of education, and preserved autonomy in daily 
life activities. Participants classified as MCI presented 
cognitive complaints, abnormal performance (low scores 
according to published cutoffs) in one or more NBACE 
subtests and preserved autonomy in daily life activities 
(no dementia).

For all participants, the following data were collected: 
demographics (age, sex, education), presence of cardio-
vascular risk factors (heart disease, respiratory disease, 
hypertension, dyslipidemia, smoking, diabetes mellitus, 
and stroke), Mini-Mental State Examination (MMSE) 
[27] scores, syndromic diagnosis (SCD or MCI), amy-
loid status (positivity defined as Florbetaben (FBB) 
Centiloid > 13.5 [28] for FACEHBI participants and cer-
ebrospinal fluid (CSF) Aβ42/Aβ40 ratio < 0.063 [29] for 
BIOFACE participants), apolipoprotein E (APOE) ε4 sta-
tus, OCT-A (macular VD in the superficial plexus in four 
quadrants), and brain MRI (CV and atrophy measures).

Neuro‑ophthalmological evaluation
Study participants underwent a complete neuro-ophthal-
mological evaluation that was performed by an optom-
etrist and lasted about 20 min. The evaluation comprised: 
(1) review of past ophthalmological diseases, treatments, 
and surgeries, (2) monocular visual acuity assessment 
with the participants wearing their habitual correction 
for refractive error using a pinhole occluder and the Early 
Treatment of Diabetic Retinopathy Study (ETDRS) chart 
[30, 31], (3) intraocular pressure (IOP) measurement by 
Icare tonometry [32], and (4) swept source (SS) OCT 
scan. More details can be found elsewhere [33].

Optical coherence tomography angiography
Participants were imaged with a DRI OCT Triton—SS 
OCT (Topcon Co. Tokyo, Japan). The OCT exam was 
completed in about 5–10  min, no pupil dilation was 
required and both eyes were scanned separately. Data 
were analyzed with the OCT Angiography Ratio Analysis 
(OCTARA) processing software. An automatic segmen-
tation method was employed to obtain measures of the 
superficial vascular plexus, and the quantification of VD, 
expressed as the % of area covered by vessels. VD meas-
ures were obtained in a 6 × 6  mm area centered in the 
fovea. The central area (1 mm circle) was excluded from 
the analysis. The parafoveal area, defined by two concen-
tric rings measuring 1- and 3-mm diameter, respectively, 
was subdivided into four quadrants: nasal, superior, tem-
poral, and inferior. More details can be found in a recent 
publication [34]. Only VD measures from the right eye 

were used for the analysis, as in previous papers from our 
group [20, 33, 35].

Brain magnetic resonance imaging acquisition 
and processing
All participants underwent a structural MRI within a 
6-month window after the clinical assessment and OCT-
A. Imaging data were analyzed using the Ace Alzheimer 
Center Barcelona Pipeline for Neuroimaging Analysis.

For FACEHBI participants, MRIs were acquired on 
a 1.5-T Siemens Magneton Aera (Erlangen, Germany) 
using a 32-channel head coil from Clínica Corachan (Bar-
celona). Anatomical T1-weighted images were acquired 
using a rapid acquisition gradient-echo three-dimen-
sional (3D) magnetization-prepared rapid gradient-echo 
(MPRAGE) sequence with the following parameters: 
repetition time (TR) 2.200 ms, echo time (TE) 2.66 ms, 
inversion time (TI) 900  ms, slip angle 8°, field of view 
(FOV) 250  mm, slice thickness 1  mm, and isotropic 
voxel size 1 × 1 × 1  mm. Subjects also received axial 
T2-weighted, 3D isotropic fast fluid-attenuated inversion 
recovery (FLAIR), and axial T2*-weighted sequences to 
detect significant vascular pathology or microbleeds.

For BIOFACE participants, MRIs were acquired in 
a Siemens MAGNETOM VIDA 3  T scanner (Erlan-
gen, Germany) using 32-channel head coil from Clinica 
Corachan (Barcelona). T1-weigthed images, for the mor-
phological and the volumetric studies, were acquired 
using a gradient-echo 3D MPRAGE sequence with 
the following parameters: TR 2.200  ms, TE 2.23  ms, TI 
968 ms, 1.2-mm slice thickness, FOV 270 mm, and voxel 
measurement 1.1 × 1.1 × 1.2  mm. In order to complete 
the acquisition a 3D isotropic FLAIR, an axial sequence 
T2-weighted, and an axial sequence T2*-weighted will 
be performed to detect vascular brain damage and 
microbleeds.

1.5-T and 3-T MRI images from the two cohorts 
(FACEHBI and BIOFACE) were analyzed together, as 
the scanner resolution (1.5 T vs 3 T) only affects image 
resolution (accuracy of the measurement) not the meas-
urement per se. Additionally, all images were converted 
to the 1-mm3 voxel resolution, so the differences in meas-
urements were even less noticeable.

MRI images were stored in a picture archiving commu-
nication system (PACS) system and submitted to an auto-
mated process of de-identification.

Two parameters were used to assess cerebrovascular 
damage: the Fazekas scale [36] and the volume of white 
matter hyperintensities (WMH).

The Fazekas scale is a visual assessment scale that 
divides the white matter into periventricular and 
deep white matter [36]. Each region is given a grade 
depending on the size and confluence of the lesions: 
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(a) periventricular white matter (PVWM) (0 = absent, 
1 = caps or pencil-thin lining, 2 = smooth halo, 3 = irregu-
lar periventricular signal extending into the deep white 
matter) and (b) deep white matter (DWM) (0 = absent, 
1 = punctate foci, 2 = beginning confluence, 3 = large con-
fluent areas). Image quantification using the Fazekas scale 
was performed by two expert radiologists who were blind 
to demographic characteristics and diagnostic status 
of participants. For the present analysis, as the Fazekas 
scale a high positive asymmetric distribution, scores were 
dichotomized into two categories: absence (Fazekas 0–1) 
and presence (Fazekas 2–3) of significant CV pathology.

The volume of WMH was calculated as follows. First, 
T2-FLAIR was registered into T1w native space with 
Advanced Normalization Tools (ANTs) 3.0 software 
package [37]. Then with T1w and T2-FLAIR registered 
images, we used the U-Net with multi-scale highlight-
ing foregrounds method described elsewhere [38] and 
the PGS software provided by the authors. The software 
isolates the WMH regions so the WMH volume could be 
straightforwardly obtained with FMRIB Software Library 
v6.0 tools [39] (Fig. 1). No partial volume correction was 
applied for the determination of WMH volume, since it 
should be equal to zero in a healthy brain regardless of 
the intracranial volume. Additionally, sex is the main 
contributor to the variation in intracranial volume and it 
was included as an adjusting factor in all the analysis.

Additionally, we calculated several structural brain 
parameters related to AD atrophy patterns: the hip-
pocampal volume, the ventricle volume, and the Alzhei-
mer’s disease cortical signature (ADCS) thickness. MRI 
T1w images underwent a Freesurfer 7.2 reconstruction 
[40–42]. Hippocampal volume was calculated as the sum 

of right and left hippocampus volume and adjusted by the 
estimated intracranial volume using the residual method 
[43]. Ventricle volume was calculated as the sum of the 
reconstructed ventricles and adjusted by the estimated 
intracranial volume using the residual method. Lastly, the 
ADCS was expressed by a meta-region of interest (ROI) 
composed of the following areas: entorhinal, inferior 
temporal, middle temporal, and fusiform. The average 
thickness of the ADCS ROI was calculated as the mean 
thickness across these regions weighted by their surface 
area [44–46].

Statistical analyses
Data processing and analysis were carried out using R 
4.1.2 [47]. All quantitative data were checked for normal-
ity, skewness, and range restriction. A log transformation 
was applied to those measures that did not follow a nor-
mal distribution (WMH burden and ventricle volume). 
Demographic and clinical variables (age, sex, education, 
APOE ε4 status, MMSE score, hypertension, diabetes 
mellitus, dyslipidemia, heart disease, respiratory disease, 
smoking, and stroke) were examined using frequency 
analysis (Student’s t and Pearson’s chi-square tests) to 
characterize their distribution between the two diagnos-
tic groups (SCD vs MCI). In the following analyses, only 
those variables which prevalence was greater than 5% of 
the total cohort were included.

For the final models, we included cardiovascular 
variables (hypertension, diabetes mellitus, dyslipi-
demia, heart disease, respiratory disease, and smok-
ing) as adjusting factors. In order to determine which 
demographic and clinical variables should be addition-
ally included as adjusting factors in the models, four 

Fig. 1 Representative MRI T2‑weighted images from a 68‑year‑old male with SCD showing A substantial WMH damage (Fazekas scale score = 3) 
and B isolation and masking of the WMH burden (in red) using the PGS software. Abbreviations: MRI: magnetic resonance imaging; WMH: white 
matter hyperintensitiy; SCD: subjective cognitive decline
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multiple linear regression analyses were carried out to 
study their distribution among the four regional mac-
ular VD measures, separately. We examined the fol-
lowing variables: age, sex, education, APOE ε4 status, 
amyloid (A) status, and syndromic diagnosis (SCD vs 
MCI), using cardiovascular variables (hypertension, 
dyslipidemia, diabetes mellitus, heart disease, respira-
tory disease, and smoking) as adjusting factors. For all 
the analyses, alpha level was set at 0.05.

Five linear regression analyses were performed to 
determine the capacity of each regional macular VD 
measure to discriminate brain vascular and structural 
changes. Those demographic and clinical variables that 
showed a significant impact in the previous multiple 
linear regression analyses, along with cardiovascular 
variables (heart disease, respiratory disease, hyperten-
sion, dyslipidemia, smoking, and diabetes mellitus), 
were included as adjusting factors in the analyses. All 
the regression analyses described below were per-
formed as follows: first, we ran the analyses without the 
adjusting factors, and then introduced those to assess 
their effect on the discrimination task.

First, a logistic regression analysis of the association 
of regional VD measures between the Fazekas catego-
ries was performed. We reported the odds ratio and its 
95% confidence interval, the z-scores, and significance. 
Then, four different multiple linear regression analyses 
of the association of each regional macular VD meas-
ure with the WMH volume, hippocampal volume, ven-
tricle volume, and the ADCS thickness as outcomes, 
separately, were performed. For these analyses, we 
reported regression coefficients, t-value, significance, 

and beta. Alpha level was set at 0.0125 after Bonferroni 
correction.

Lastly, the former analyses were repeated to assess the 
interaction between the A status and the four regional 
VD measures to discriminate brain vascular (Fazekas 
categories, WMH volume) and structural (hippocampal 
volume, ventricle volume and ADCS thickness) features, 
separately. Alpha level was set at 0.0125 after Bonferroni 
correction.

Results
Demographic and clinical characteristics of the cohort
Data from 275 participants who completed v5 of the 
FACEHBI study and v0 of the BIOFACE study were 
initially reviewed (Fig.  2). Several exclusion criteria 
were applied: lack of OCT-A measures (n = 28), lack 
of brain MRI (n = 11), time between OCT-A and brain 
MRI > 6  months (n = 4), lack of Aβ positron emission 
tomography (PET) or CSF biomarkers (n = 21), lack of 
APOE genotype (n = 1), and finally, ophthalmological 
conditions that could interfere with the OCT-A measure-
ments (n = 23: n = 4 due to retinal surgery, n = 1 due to 
retinopathy, n = 7 due to open-angle glaucoma, n = 3 due 
to IOP > 24 mmHg, n = 4 due to other reasons)).

The final sample consisted of 188 individuals (89 with 
SCD and 99 with MCI) who completed FACEHBI v5 or 
BIOFACE v0 and had OCT-A, brain MRI, amyloid status, 
and APOE genotype information available.

Demographic characteristics and past medical history 
of participants are displayed in Table  1. Compared to 
SCD individuals, those in the MCI group showed younger 
age (64.35 ± 6.82 vs 68.47 ± 7.27, p < 0.001), fewer years of 

Fig. 2 Study flowchart. Abbreviations: APOE: apolipoprotein E; CSF: cerebrospinal fluid; IOP: intraocular pressure; MCI: mild cognitive impairment; 
MRI: magnetic brain imaging; OCT‑A: Optical Coherence Tomography – angiography; PET: positron emission tomography; SCD: subjective cognitive 
decline
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education (12.41 ± 5.11 vs 15.71 ± 4.24, p < 0.001), lower 
MMSE scores (27.91 ± 1.64 vs 29.07 ± 1.15, p < 0.001), lower 
rates of respiratory disease (6.06% vs 16.85%, p = 0.035), 
and higher rates of smoking (49.49% vs 22.47%, p < 0.001).

Regarding biomarker data (see Table  2), MCI and 
SCD participants showed similar rates of amyloidosis 
(25.25% vs 31.46%, p = 0.434) and CV damage (Fazekas 
category 2–3: 7.07% vs 14.62%, p = 0.151; WMH volume 
(3020.31 ± 4289.90 vs 3408.14 ± 4752.04, p = 0.559)). MCI 
participants showed significantly higher regional macular 
VD measures compared to the SCD group in the nasal, 
temporal, and inferior quadrants (p = 0.029, p < 0.001, and 
p = 0.024, respectively).

Multiple linear regression analyses of clinical, 
demographic, and biomarker variables with regional VD 
measures
The multiple linear regression analysis exploring the asso-
ciation of age, sex, education, APOE ε4 status, A status, and 
syndromic diagnosis (SCD vs MCI) with each regional mac-
ular VD measure showed that age had a significant effect on 
macular VD in the nasal, temporal, and inferior quadrants 
(all, p < 0.027), sex had a significant effect on macular VD in 
the temporal quadrant (p = 0.033), and syndromic diagnosis 
had a significant effect on macular VD in the temporal and 
superior quadrants (p < 0.043), so those were included as 
adjusting factors in all following analyses (Additional file 1).

Table 1 Demographic and clinical characteristics of the study cohort

Data are shown as mean ± standard deviation for quantitative variables and n (%) for qualitative variables

Abbreviations: APOE Apolipoprotein E, MCI Mild cognitive impairment, MMSE Mini‑Mental State Examination, SCD Subjective cognitive decline
* Significance was set up at p < 0.05
a Student’s t test; bPearson’s chi‑square test

Variables Whole cohort (n = 188) SCD (n = 89) MCI (n = 99) Significance

Age (year) 66.30 ± 7.32 68.47 ± 7.27 64.35 ± 6.82  < 0.001* a

Sex (females) 119 (63.30%) 59 (66.29%) 60 (60.61%) 0.512 b

Education (year) 13.97 ± 4.98 15.71 ± 4.24 12.41 ± 5.11  < 0.001* a

APOE ε4 status 58 (30.85%) 23 (25.84%) 35 (35.35%) 0.211 b

MMSE score 28.46 ± 1.54 29.07 ± 1.15 27.91 ± 1.64  < 0.001* a

Hypertension 63 (33.51%) 33 (37.08%) 30 (30.30%) 0.408 b

Diabetes mellitus 11 (5.85%) 4 (4.94%) 7 (7.07%) 0.660 b

Dyslipidemia 76 (40.43%) 39 (43.82%) 37 (37.37%) 0.453 b

Heart disease 19 (10.11%) 10 (11.24%) 9 (9.09%) 0.807 b

Respiratory disease 21 (11.17%) 15 (16.85%) 6 (6.06%) 0.035* b

Stroke 3 (1.60%) 0 (0.00%) 3 (3.03%) 0.258 b

Smoking 69 (36.70%) 20 (22.47%) 49 (49.49%)  < 0.001* b

Table 2 Biomarker data of the study cohort

Data are shown as mean ± standard deviation for quantitative variables and n (%) for qualitative variables

A + status was defined as FBB‑PET Centiloid > 13.5 in the FACEHBI study and CSF Aβ42/Aβ40 ratio < 0.063 in the BIOFACE study

Abbreviations: A Amyloid, MCI Mild cognitive impairment, MRI Magnetic resonance imaging, OCT-A Optical coherence tomography – angiography, SCD Subjective 
cognitive decline, VD Vessel density, WMH White matter hyperintensity
* Significance was set up at p < 0.05
a Student’s t test; bPearson’s chi‑square test

Variables Whole cohort (n = 188) SCD (n = 89) MCI (n = 99) Significance

A + status 53 (28.19%) 28 (31.46%) 25 (25.25%) 0.434 b

Brain MRI

 Fazekas category 2–3 20 (10.64%) 13 (14.61%) 7 (7.07%) 0.151 b

 WMH volume  (mm3) 3203.91 ± 4506.54 3408.14 ± 4752.04 3020.31 ± 4289.90 0.559 a

OCT‑A

 VD nasal 47.66 ± 3.81 47.03 ± 3.16 48.23 ± 4.24 0.028* a

 VD superior 48.67 ± 4.74 48.11 ± 4.18 49.17 ± 5.16 0.124 a

 VD temporal 45.83 ± 3.42 44.97 ± 2.94 46.59 ± 3.65 0.001* a

 VD inferior 47.81 ± 5.44 46.89 ± 4.40 48.65 ± 6.14 0.024* a
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Logistic regression analysis of the association of macular 
VD and Fazekas categories
Representative images of OCT-A and brain MRIs from 
study participants are depicted in Fig. 3.

The association of regional macular VD measures with 
the Fazekas categories is depicted in Tables 3 and 4, with 
and without including age, sex, syndromic diagnosis, and 
cardiovascular variables as adjusting factors.

Regression models revealed that regional macular VD 
measures were not able to discriminate the Fazekas cate-
gories (all p > 0.111, Fig. 4). Age (p = 0.006), hypertension 
(p = 0.003), and smoking (p = 0.005) showed a significant 
association with the Fazekas categories.

Multiple linear regression analysis of the association 
of macular VD with WMH volume
The association of regional macular VD measures with 
WMH volume, with and without including age, sex, 
syndromic diagnosis, and all cardiovascular variables as 
adjusting factors, are shown in Tables 5 and 6. Regression 
models revealed that regional macular VD was not asso-
ciated to WMH volume (all, p > 0.051, Fig. 5). Age showed 
a positive association with the WMH volume (p < 0.001).

Multiple linear regression analysis of the association 
of macular VD with brain atrophy measures
The associations of regional macular VD with brain 
atrophy measures, with and without including age, 
sex, syndromic diagnosis, and cardiovascular vari-
ables as adjusting factors, are depicted in Additional 
files 2, 3, 4, 5, 6 and 7. Regression models showed that 
VD in the nasal quadrant was significantly associated 
to hippocampal volume (p = 0.007, Fig.  6). On the 
other hand, VD measures were not associated to other 
measures of brain atrophy such as ventricle volume 
(all, p > 0.657, Fig. 7) or ADCS thickness (all, p > 0.235, 
Fig.  8). Age showed a negative association with hip-
pocampal volume (p < 0.001, Additional file  2) and a 

Fig. 3 Representative OCT‑A and brain MRI images from the study participants. A 68‑year‑old female with SCD and high CV damage (Fazekas scale 
score = 2, WMH volume = 30,943  mm3). B 61‑year‑old female with MCI and high CV damage (Fazekas scale score = 3, WMH volume = 27,000  mm3). 
C 61‑year‑old female with SCD and low CV damage (Fazekas scale score = 0, WMH volume = 290  mm3). D 60‑year‑old female with MCI and low CV 
damage (Fazekas scale score = 0, WMH volume = 710  mm3). Abbreviations: CV: cerebrovascular; MCI: mild cognitive impairment; MRI: magnetic 
ressonance imaging; OCT‑A: Optical Coherence Tomography – angiography; SCD: subjective cognitive decline; WMH: white matter hyperintensity

Table 3 Logistic regression analysis of the association of macular 
VD and Fazekas categories including adjusting factors

Including age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease, and smoking as adjusting 
factors

Abbreviations: CI Confidence interval, OR Odds ratio, VD Vessel density
* Significance was set up at p < 0.0125

Variables OR1 95%  CI1 z1 Significance1

Age 1.14 1.04–1.26 2.75 0.006*

Sex 2.32 0.69–9.27 1.29 0.196

Syndromic diagnosis 0.41 0.10–1.51 1.29 0.197

Hypertension 6.35 1.94–23.61 2.94 0.003*

Diabetes mellitus 1.34 0.17–7.37 0.32 0.751

Dyslipidemia 0.37 0.10–1.22 1.56 0.118

Heart disease 0.77 0.08–4.61 0.26 0.794

Respiratory disease 4.29 0.82–22.30 1.77 0.077

Smoking 7.01 1.89–30.93 2.78 0.005*

VD nasal 1.03 0.84–1.27 0.30 0.762

VD temporal 1.18 0.93–1.54 1.33 0.182

VD superior 0.91 0.80–1.02 1.60 0.111

VD inferior 1.04 0.93–1.15 0.67 0.503
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positive association with ventricle volume (p < 0.001, 
Additional file  4). Diabetes showed a positive asso-
ciation with ventricle volume (p = 0.001, Additional 
file  4). Lastly, syndromic diagnosis showed a negative 
association with ADCS thickness (p < 0.001, Additional 
file 6).

Interaction of the A status and macular VD 
in discriminating CV damage and brain atrophy
Regression models showed that the interaction of the A 
status with macular VD had no effect in differentiating 
Fazekas categories (all p > 0.079, Additional file 8), WMH 
volume (all p > 0.374, Additional file  9), hippocampal 
volume (all p > 0.328, Additional file  10), ventricle vol-
ume (all p > 0.410, Additional file 11), or ADCS thickness 
(all p > 0.065, Additional file  12). Thus, the association 

of macular VD with measures of CV damage and brain 
atrophy was not significantly influenced by the A status.

Discussion
We investigated the relationship of macular VD in the 
superficial plexus quantified by OCT-A with measures 
of CV pathology and brain atrophy in 188 non-demented 
participants from two research cohorts at Ace Alzheimer 
Center Barcelona. Our data suggested that macular VD 
was not a proxy of CV burden but was significantly asso-
ciated with hippocampal atrophy independently of amy-
loid status.

In the dementia field, the early identification of CV 
pathology is crucial, as asymptomatic brain vascu-
lar changes in middle-aged adults are associated with a 
higher risk of future cognitive decline and disability [48]. 
Preliminary data suggested that OCT-A had the poten-
tial to be used as an alternative, direct, and non-invasive 
method to assess the health of brain vasculature in early 
stages of CV damage instead of conventional imaging 
techniques such as brain MRI, which has a limited diag-
nostic accuracy and does not allow the in vivo visualiza-
tion of brain microvasculature. Two publications from 
large cohorts supported this idea, showing significant 
associations between vascular retinal changes and CV 
pathology. First, changes in retinal vascular calibers (nar-
rower arterioles and wider venules) from fundus pho-
tographs showed an association with poor white matter 

Table 4 Logistic regression analysis of the association of macular 
VD and Fazekas categories not including adjusting factors

Abbreviations: CI Confidence interval, OR Odds ratio, VD Vessel density
* Significance was set up at p < 0.0125

Variables OR 95% CI z Significance

VD nasal 1.03 0.89–1.21 0.39 0.694

VD temporal 0.96 0.80–1.17 0.36 0.716

VD superior 0.93 0.84–1.03 1.49 0.137

VD inferior 1.03 0.95–1.12 0.79 0.428

Fig. 4 Adjusted macular VD measurements by Fazekas categories. Macular VD differences between Fazekas categories in A nasal, B superior, 
C temporal, and D inferior quadrants. Macular VD measures are adjusted by age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease, and smoking. Abbreviations: n.s.: non‑significant; VD: vessel density
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microstructure on diffusor tension MRI [49]. Second, 
subclinical cerebral infarcts were associated with reti-
nal microvascular abnormalities (arteriovenous nicking, 
focal arteriolar narrowing, blot hemorrhages, soft exu-
dates, and microaneurysms) in individuals with hyper-
tension [50]. Additionally, several smaller studies also 
highlighted a similar association between retinal and 
brain vascular pathology [51–58]. Our current results, 
though, do not support the correlation of retinal vs brain 
vascular changes, as we did not detect a significant asso-
ciation of macular VD with the Fazekas scale scores and 
WMH volume assessed by brain MRI. We believe that the 
discrepancy between our data and results from previous 
publications might be due to several factors. First of all, 
one of the main methodological differences among pub-
lished data are the measures used to assess retinal and 
brain vascular damage, which differ widely among works 

(for retinal measures: retinal vascular calibers, arterio-
venous nicking, arteriolar narrowing, arterial tortuosity, 
hemorrhages, exudates, microaneurysms, wall-to-lumen 
arterial ratio, skeleton density of capillaries, VD, arte-
rial fractal dimension; for brain measures: diffusor ten-
sor for WM microstructure assessment, presence of 
cerebral infarcts, volume of WMH, markers of vascular 
integrity, CV reactivity in WM …). In particular, in our 
study, we used a quantitative measure of retinal vascular 
pathology (macular VD in the superficial vascular plexus 
in four different quadrants) and both semi-quantitative 
and quantitative data to measure CV damage (the Faze-
kas scale and WMH volume by Freesurfer, respectively), 
which were not directly comparable with any other pub-
lications. Additionally, the type of population (with and 
without cognitive impairment, with or without CV risk 
factors, with or without stroke) and number of partici-
pants included also varied among studies and could be 
influencing the outcomes. The types of retinal devices 
(OCT vs fundus photography) and brain MRI used for 
the vascular quantifications could play a part in the dis-
crepant results among publications. Lastly, the methods 
used in our publication might not be sensitive enough to 
detect very small effects in the association of retinal and 
brain vascular measures.

It is well known that CV damage and neurodegenera-
tion develop in parallel, thus we aimed to additionally 
investigate the relationship of retinal vascular changes 
with measures of brain atrophy. Our study detected that 
retinal vascular loss in the nasal quadrant (lower VD) was 
significantly associated with hippocampal atrophy, while 
the other measures of brain atrophy investigated (ven-
tricle volume and ADCS thickness) were not related to 
retinal vascular changes. Although multiple works have 
demonstrated a significant association between retinal 
structural changes (retinal nerve fiber layer (RNFL) and 
macular thinning mostly) and brain atrophy [59–64], few 
publications have focused on the specific relationship of 
retinal vasculature with brain structural changes. Simi-
lar to our results, Hu et al. showed a positive association 
between retinal VD and gray matter volumes of the hip-
pocampal subfields in 25 cognitively impaired patients 
(17 MCI and 8 AD dementia) [65].

Finally, our data showed that the association of macular 
VD with measures of CV damage and brain atrophy was not 
significantly influenced by the brain amyloid status of the 
participants, assessed by either CSF of PET. This particular 
issue had not been clearly addressed in previous publica-
tions correlating retinal and brain vascular damage, which 
either did not report the amyloid status of participants 
[48–54] or analyzed altogether data of participants with 
presence and absence of brain amyloidosis [57]. Our result 
also fits with a previous publication from our group using 

Table 5 Multiple linear regression analysis of the association of 
macular VD and WMH volume including adjusting factors

Including age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease, and smoking as adjusting 
factors

A log transformation was applied to WMH volume measures

Abbreviations: VD Vessel density, WMH White matter hyperintensities
* Significance was set up at p < 0.0125

Variables Coefficient t Significance Beta

Age 0.05 4.83  < 0.001* 0.37

Sex 0.06 0.41 0.685 0.03

Syndromic diagnosis 0.20 1.40 0.163 0.10

Hypertension 0.34 2.28 0.024 0.16

Diabetes mellitus 0.60 2.09 0.038 0.14

Dyslipidemia  − 0.06 0.44 0.660  − 0.03

Heart disease 0.09 0.38 0.702 0.03

Respiratory disease 0.38 1.75 0.082 0.12

Smoking  − 0.03 0.20 0.845  − 0.01

VD nasal  − 0.04 1.97 0.051  − 0.17

VD temporal 0.05 1.93 0.056 0.19

VD superior  − 0.01 0.58 0.563  − 0.05

VD inferior 0.01 0.47 0.640 0.03

Table 6 Multiple linear regression analysis of the association of 
macular VD and WMH volume not including adjusting factors

A log transformation was applied to WMH volume measures

Abbreviations: VD Vessel density, WMH White matter hyperintensities
* Significance was set up at p < 0.0125

Variables Coefficient t Significance Beta

VD nasal  − 0.04 1.83 0.068  − 0.17

VD temporal 0.02 0.53 0.595 0.05

VD superior  − 0.00 0.19 0.852  − 0.02

VD inferior  − 0.00 0.23 0.816  − 0.02
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Fig. 5 Association of macular VD and WMH volume. Association of macular VD in A nasal, B superior, C temporal, and D inferior quadrants 
with WHM volume. Macular VD measures are adjusted by age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, heart disease, 
respiratory disease, and smoking. Abbreviations: n.s.: non‑significant; VD: vessel density; WMH: white matter hyperintensity

Fig. 6 Association of macular VD and hippocampal volume. Association of macular VD in A nasal, B superior, C temporal, and D inferior quadrants 
with hippocampal volume. Macular VD measures are adjusted by age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, heart 
disease, respiratory disease, and smoking. Abbreviations: n.s.: non‑significant; VD: vessel density; WMH: white matter hyperintensity
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Fig. 7 Association of macular VD and ventricle volume. Association of macular VD in A nasal, B superior, C temporal, and D inferior quadrants 
with ventricle volume. Macular VD measures are adjusted by age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, heart 
disease, respiratory disease, and smoking. Abbreviations: n.s.: non‑significant; VD: vessel density

Fig. 8 Association of macular VD and ADCS thickness. Association of macular VD in A nasal, B superior, C temporal, and D inferior quadrants 
with ACDS thickness. Macular VD measures are adjusted by age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, heart 
disease, respiratory disease, and smoking. Abbreviations: ADCS: Alzheimer’s disease cortical signature; non‑significant; VD: vessel density
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data from the NORFACE cohort, showing that macular VD 
did not significantly differ between Alzheimer and Normal 
AT(N) categories assessed by CSF biomarkers, and that 
macular VD was not correlated with CSF Aβ1-42 [66].

We acknowledge that our study has limitations. First of 
all, our cohort had a relatively low burden of CV pathol-
ogy (only 10.64% of the sample belonged to the Fazekas 
2–3 group). Second, our data was obtained from two 
research studies, not necessarily reflecting retinal and 
brain vascular changes of real-world patients with cogni-
tive decline. Third, our results were cross-sectional, not 
being able to show changes over time in macular VD or 
brain MRI measures. Forth, the VD measures employed 
were limited to the macular region and the superficial 
vascular plexus, lacking information about FAZ and VD 
in the deep vascular plexus. Lastly, we lacked information 
about CV-related drugs taken by the study participants 
and the quality of the OCT-A images.

We also consider that our study has several strengths 
compared to previous works. Our cohort consisted of a 
relatively large and single-site sample of non-demented 
research participants who underwent similar testing 
and biomarkers. We limited our analysis to data from 
the right eye. Our participants’ age range was quite large 
(51–91), allowing us to potentially detecting macular VD 
changes in early and late ages. Notably, we used several 
cardiovascular risk factors as adjusting factors in all the 
analysis. Lastly, the neurologist and optometrist were 
blinded of each other’s diagnosis.

In summary, our study does not support that macu-
lar VD in the superficial plexus assessed by OCT-A 
is a proxy of CV damage in a research cohort of non-
demented individuals with SCD and MCI.
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Additional file 1. Multiple linear regression analyses of the association of 
clinical, demographic and biomarker variables with macular VD. Including 
hypertension, diabetes mellitus, dyslipidemia, heart disease, respiratory 
disease and smoking as adjusting factors. Significance was set up at 
p < 0.05. Abbreviations: A: amyloid; APOE: apolipoprotein E; CI: confidence 
interval; VD: vessel density.

Additional file 2. Multiple linear regression analysis of the association 
of regional macular VD with hippocampal volume with adjusting factors. 
Including age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease and smoking as adjusting 
factors. Significance was set up at p < 0.0125. Abbreviation: VD: vessel 
density.

Additional file 3. Multiple linear regression analysis of the association of 
regional macular VD with hippocampal volume without adjusting factors. 
Significance was set up at p < 0.0125. Abbreviation: VD: vessel density.

Additional file 4. Multiple linear regression analysis of the association 
of regional macular VD with ventricle volume with adjusting factors. 
Including age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease and smoking as adjusting 
factors. Significance was set up at p < 0.0125. Abbreviation: VD = vessel 
density. Note: A log transformation was applied to the ventricles volume 
measures.

Additional file 5: Multiple linear regression analysis of the association of 
regional macular VD with ventricles volume without adjusting factors. Sig‑
nificance was set up at p < 0.0125. Abbreviation: VD = vessel density. Note: 
A log transformation was applied to the ventricles volume measures.

Additional file 6. Multiple linear regression analysis of the association of 
regional macular VD with ADCS thickness with adjusting factors. Including 
age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipi‑
demia, heart disease, respiratory disease and smoking as adjusting factors. 
Significance was set up at p < 0.0125. Abbreviations: ADCS: Alzheimer´s 
disease cortical signature; VD = vessel density.

Additional file 7. Multiple linear regression analysis of the association 
of regional macular VD with ADCS thickness without adjusting factors. 
Significance was set up at p < 0.0125. Abbreviations: ADCS: Alzheimer´s 
disease cortical signature; VD = vessel density.

Additional file 8. Logistic regression analysis of the interaction of the A 
status and macular VD in discriminating Fazekas categories. Including age, 
sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, 
heart disease, respiratory disease and smoking as adjusting factors. Signifi‑
cance was set up at p < 0.0125. Abbreviations: CI: confidence interval; OR: 
odds ratio; VD: vessel density.

Additional file 9. Multivariate regression analysis of the interaction of the 
A status and macular VD in discriminating WMH volume. Including age, 
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sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipidemia, 
heart disease, respiratory disease and smoking as adjusting factors. Signifi‑
cance was set up at p < 0.0125. Abbreviations: A: amyloid; V: vessel density.

Additional file 10. Multivariate regression analysis of the interaction 
of the A status and macular VD in discriminating hippocampal volume. 
Including age, sex, syndromic diagnosis, hypertension, diabetes mellitus, 
dyslipidemia, heart disease, respiratory disease and smoking as adjusting 
factors. Significance was set up at p < 0.0125. Abbreviations: A: amyloid; 
VD: vessel density.

Additional file 11. Multivariate regression analysis of the interaction of 
the A status and macular VD in discriminating ventricles volume. Including 
age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipi‑
demia, heart disease, respiratory disease and smoking as adjusting factors. 
Significance was set up at p < 0.0125. Abbreviations: A: amyloid; VD: vessel 
density. Note: A log transformation was applied to the ventricles volume 
measures.

Additional file 12. Multivariate regression analysis of the interaction of 
the A status and macular VD in discriminating ACDS thickness. Including 
age, sex, syndromic diagnosis, hypertension, diabetes mellitus, dyslipi‑
demia, heart disease, respiratory disease and smoking as adjusting factors. 
Significance was set up at p < 0.0125. Abbreviations: A: amyloid; ADCS: 
Alzheimer´s disease cortical signature; VD: vessel density.
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