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Abstract 

Background Advancement in screening tools accessible to the general population for the early detection of Alz‑
heimer’s disease (AD) and prediction of its progression is essential for achieving timely therapeutic interventions 
and conducting decentralized clinical trials. This study delves into the application of Machine Learning (ML) tech‑
niques by leveraging paralinguistic features extracted directly from a brief spontaneous speech (SS) protocol. We 
aimed to explore the capability of ML techniques to discriminate between different degrees of cognitive impairment 
based on SS. Furthermore, for the first time, this study investigates the relationship between paralinguistic features 
from SS and cognitive function within the AD spectrum.

Methods Physical‑acoustic features were extracted from voice recordings of patients evaluated in a memory unit 
who underwent a SS protocol. We implemented several ML models evaluated via cross‑validation to identify indi‑
viduals without cognitive impairment (subjective cognitive decline, SCD), with mild cognitive impairment (MCI), 
and with dementia due to AD (ADD). In addition, we established models capable of predicting cognitive domain 
performance based on a comprehensive neuropsychological battery from Fundació Ace (NBACE) using SS‑derived 
information.

Results The results of this study showed that, based on a paralinguistic analysis of sound, it is possible to identify 
individuals with ADD (F1 = 0.92) and MCI (F1 = 0.84). Furthermore, our models, based on physical acoustic informa‑
tion, exhibited correlations greater than 0.5 for predicting the cognitive domains of attention, memory, executive 
functions, language, and visuospatial ability.

Conclusions In this study, we show the potential of a brief and cost‑effective SS protocol in distinguishing 
between different degrees of cognitive impairment and forecasting performance in cognitive domains commonly 
affected within the AD spectrum. Our results demonstrate a high correspondence with protocols traditionally used 
to assess cognitive function. Overall, it opens up novel prospects for developing screening tools and remote disease 
monitoring.
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Introduction
The digitization in the healthcare field experienced in 
the last few years has led to the emergence of new tech-
nologies with great potential for Alzheimer’s disease 
(AD) management [1]. This neurodegenerative disease is 
the most frequent type of dementia worldwide. With no 
effective treatment yet available, AD poses a significant 
challenge to the sustainability of existing healthcare sys-
tems [2]. As a result, the development of tools capable of 
detecting the disease in its early stages has become one of 
the most active research areas [3].

From a neuropsychological standpoint, AD typi-
cally manifests with impairments in memory, atten-
tion, language, executive and visuospatial functions, and 
behavior  [2]. These alterations worsen as the disease 
progresses, eventually limiting the individual’s independ-
ence. At the pathophysiological level, AD is characterized 
by a cascade of brain-level events, including the accu-
mulation of amyloid-β plaques (Aβ ), the formation of 
hyperphosphorylated tangles of tau protein (p-tau), and 
neuroinflammation [2, 4]. These neuropathological signa-
tures ultimately lead to atrophy, decreased brain metabo-
lism, and disruptions in brain connectivity, which cause 
the observed cognitive alterations [3–5].

In this context, it is well known that the entire land-
scape of neurological events in AD initiates several years 
before the onset of clinical symptoms and progresses 
silently until the first cognitive changes emerge [6]. Con-
sequently, numerous diagnostic criteria have been pro-
posed, incorporating information from biomarkers such 
as A β and p-tau, measured by positron emission tomog-
raphy (PET) or detected on cerebrospinal fluid (CSF), 
along with evidence of neurodegeneration assessed using 
magnetic resonance imaging (MRI)  [4]. However, the 
detection of biomarkers through neuroimaging or lum-
bar puncture requires specialized equipment and trained 
personnel, rendering these procedures expensive and 
inaccessible for most healthcare centers. Furthermore, 
most patients consult a memory unit when their cogni-
tive impairment is already evident and only a minority 
when the initial neuropsychological symptoms arise  [2]. 
Collectively, these factors indicate that while these tech-
niques have significant value for disease diagnosis, their 
use as population screening tools to identify individuals 
at risk of developing AD is limited.

Conversely, neuropsychological batteries have tradi-
tionally served as the initial assessment protocol for sus-
pected cognitive impairment associated with AD [7, 8]. 

Nevertheless, these batteries still rely on the presence of 
clinicians in a specialized memory unit, making it a time-
consuming procedure. Recognizing these limitations, 
numerous online abbreviated protocols have been pro-
posed  [1, 9]. Among these, neuropsychological assess-
ment through the spontaneous speech (SS) analysis 
represents one of the most promising approaches  [10]. 
Previous research supports the presence of language def-
icits in AD patients several years before the progression 
to the dementia stage, rendering it a valuable tool for 
detecting individuals in the early stages of mild cognitive 
impairment (MCI) [11, 12]. Additionally, language abili-
ties exhibit associations with other cognitive domains 
such as memory, attention, and executive functions, 
suggesting that SS analysis has the potential to offer an 
approximate representation of an individual’s cognitive 
performance [12].

Moreover, the increasing interest in speech analysis 
using voice recordings stems from the versatility and 
abundance of information that can be extracted from 
this type of data. By employing modern natural lan-
guage processing (NLP) techniques applied to auto-
matic transcriptions  [13] or based on the information 
derived from the raw waveform  [14], it is possible to 
obtain information of great interest for assessing the 
cognitive performance of an individual. Within this 
wealth of information, the physical-acoustic features 
drawn directly from the raw sound represent an agnos-
tic, standardized, and widely available resource [15, 16]. 
These features encompass parameters such as formants, 
pitch, and prosody, which are affected in numerous 
neurodegenerative diseases and affective disorders [15].

To date, most studies analyzing SS using Machine 
Learning (ML) techniques have focused on develop-
ing diagnostic tools to differentiate clinical pheno-
types within the AD continuum. For instance, different 
research groups have shown that it is possible to obtain 
accuracies ranging from 80 to 90% for discriminat-
ing between healthy controls (HC) and AD demen-
tia (ADD) using speech-derived information  [17–22]. 
Other authors have extended their efforts beyond dis-
tinguishing ADD and HC, aiming to identify individu-
als in the early stages of MCI. In this context, results 
vary considerably based on the technique or sample 
used, with accuracies from 65 to 80% [18, 21, 23–25]. In 
contrast, very few authors have focused on addressing 
the relationship between SS and other aspects of the 
disease  [26, 27]. For example, the investigation of the 
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connection between SS and neuropsychological impair-
ment has received limited attention  [10, 28]. This rel-
evant aspect is not widely available since demonstrating 
that SS can be a reliable proxy for an individual’s cog-
nition requires its evaluation against standardized 
neuropsychological measures. However, most research 
has only utilized the Mini-Mental State Examination 
(MMSE) to explore the association of SS with cogni-
tive status  [29–31], typically within the context of the 
ADReSS challenge  [32]. Moreover, the sample sizes 
employed, usually consisting of a few hundred subjects, 
severely restrict the ability to draw conclusive findings 
regarding the expected performance of the models [28].

The present study aims to extend previous research 
investigating how information obtained from a paralin-
guistic analysis of various SS tests can differentiate among 
clinical phenotypes and predict cognitive performance. 
For this purpose, firstly, we applied ML techniques to 
differentiate individuals with preserved cognition (sub-
jective cognitive decline, SCD), patients with MCI, and 
those with ADD. Secondly, we developed models to 
predict changes in cognitive performance based on SS 
over the neuropsychological domains of memory, atten-
tion, visuospatial and executive functions, and language. 
As input variables for the models, we focused on infor-
mation extracted from SS using standardized physical 
acoustic features obtained from the extended Geneva 
Minimalistic Acoustic Parameter Set (eGeMAPS)  [15]. 
Compared to previous works, our study utilizes a sig-
nificantly larger population from a real-world setting, 
comprising SCD individuals, and patients with MCI, and 
ADD. In addition, as a novelty, our research delves into 
the connection between speech and changes in cognitive 
domain performance across the AD spectrum using ML 
and physical-acoustic features.

Methods
Study participants
This study comprised 1500 individuals who under-
went evaluation at the Memory Clinic of Ace Alzhei-
mer Center Barcelona (Ace) (single site) between March 
2022 and April 2023. The participants were referred to 
the Memory Clinic either by their General Health prac-
titioner due to subjective cognitive complaints, or they 
attended the Open House Initiative without a previous 
referral from a physician  [33]. All subjects completed 
neurological, neuropsychological, and social evalua-
tions at Ace. The cognitive assessment included the 
Spanish version of the Mini-Mental State Examination 
(MMSE) [34], the memory test of the Spanish version of 
the 7 Minute screening neurocognitive battery  [35], the 
short form of the Neuropsychiatric Inventory Question-
naire (NPI-Q)  [36], the Hachinski’s Ischemia Scale  [37], 

the Blessed Dementia Rating Scale  [38], the Clinical 
Dementia Rating (CDR)  [39], and the complete Neu-
ropsychological Battery of Fundació Ace (NBACE)  [7]. 
The final diagnosis for each participant was determined 
through consensus by a multidisciplinary team, including 
neurologists, neuropsychologists, and social workers, at a 
consensus diagnostic conference [40].

The 1500 participants included 135 individuals with 
SCD (CDR = 0) with no objective functional or cogni-
tive impairments  [41], 826 patients with MCI (CDR = 
0.5) [42], and 539 with ADD (CDR > 0.5) [43]. Within the 
subjects with ADD, 398 had mild dementia (CDR = 1), 
and 141 had moderate dementia (CDR = 2). Table 1 sum-
marizes the clinical and sociodemographic characteris-
tics of the sample used for this study.

Ethical considerations
This study and its informed consent were approved by 
the ethics committees of the Hospital Universitari de 
Bellvitge (Barcelona) (ref. PR007/22) under Spanish bio-
medical laws (Law 14/2007, 3 July, regarding biomedical 
research; Royal Decree 1716/2011, 18 November) and 
followed the recommendations of the Declaration of Hel-
sinki. All participants signed an informed consent for the 
SS protocol.

Acquisition and preprocessing of speech data
The SS protocol was carried out using the acceX ible 
platform on a tablet. The assessments were conducted 
in Spanish within a calm and controlled environment. 
Initially, the participants were presented The Cookie 
Theft Picture and were instructed to provide a compre-
hensive description of the image [44]. Subsequently, they 
were given one minute to name as many different ani-
mals as possible. The participants’ voices were recorded 
during the administration of these two tests, and the 
collected data was utilized for further analyses. The aver-
age duration of the protocol was 109.07 ± 15.54 s, with 

Table 1 Clinical and sociodemographic variables of the sample 
used for this study

Abbreviations: SCD, subjective cognitive decline; MCI, mild cognitive 
impairment; ADD, Alzheimer’s disease dementia; MMSE, Mini‑Mental State 
Examination; SD, standard deviation

Variable All sample SCD MCI ADD

Sample size 1500 135 826 539

Age (mean (SD)) 76.17 (9.41) 67.06 (10.42) 74.40 (9.01) 81.15 (6.67)

Sex (% female) 63.47 63.70 62.23 65.31

Years of formal 
education (mean 
(SD))

8.58 (4.56) 12.30 (3.79) 8.61 (4.42) 7.62 (4.48)

MMSE (mean (SD)) 25.18 (3.94) 29.33 (0.88) 26.85 (2.60) 21.62 (3.36)

https://accexible.com/
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a minimum and maximum duration of 74.6 and 158.9 s 
respectively.

The audio recordings were standardized to a frequency 
of 16 KHz, removing initial and final silent portions 
and applying the noise reduction model presented in 
[45] to eliminate potential environmental artifacts. The 
resulting audio data were manually reviewed. Then, fea-
tures were extracted from the standardized feature set 
eGeMAPS  [15] using the Python interface of the open-
source toolkit OpenSMile  [46]. The set of features from 
the eGeMAPS are oriented to provide a simplified and 
standardized selection of relevant acoustic parameters 
for detecting physiological changes in voice production 
guided by findings of previous related studies [15]. Based 
on prior research  [19, 20], we adopted the default con-
figuration provided by the OpenSMILE library  [15, 46]. 
The variables were calculated from the eighteen low level 
descriptors using a symmetric moving average filter of 
three frames long. For a more comprehensive under-
standing of the computation of the paralinguistic vari-
ables, readers are directed to  [15]. In total 176 variables 
were extracted from the voice recordings.

Calculation of cognitive composites
Neuropsychological composites created from the 
NBACE battery were used to determine the cognitive 
status of participants. Composite scores are a widely 
employed approach to capture common factors of vari-
ance across different neuropsychological tests. Their 
purpose is to simplify the information by eliminating 
redundancy between variables offering a more compre-
hensive characterization of the cognitive domain being 
assessed [47]. In this study, five cognitive domains, typi-
cally examined in AD [48, 49], were considered: memory, 
attention, visuospatial functions, executive functions, 
and language. Structural equation models (SEM) were 
used to calculate the composite scores based on the neu-
ropsychological structure described in [7], and defined by 
an expert panel of neuropsychologists.

Briefly, the SEM framework defines a measurement 
model in which observed items y ∈ R

i (e.g., i neuropsy-
chological tests) are determined by unobservable fac-
tors η ∈ R

p (e.g., p higher cognitive functions) according 
to y = υ +� · η + ǫ , where υ ∈ R

i corresponds to 
the intercepts of the regression paths, � ∈ R

i×p to the 
measurement slopes, and ǫ ∈ R

i to the residual error. 
Additionally, the measurement model is subjected to 
a structural part that defines the relationship between 
observable and latent variables η = α + B · η + ζ , where 
α ∈ R

p is a parameter vector, B ∈ R
p×p is a non-singu-

lar matrix with diag(B) = 0 indicating the relationship 
between latent variables, and ζ ∈ R

p represents the latent 
variable residuals.

In the present study, the model parameters were 
adjusted using the robust maximum likelihood estima-
tor, and the variances of the latent variables were fixed 
to 1 for model identification (unit variance method [47]). 
The model coefficients were estimated considering the 
baseline evaluations of the entire Ace database (N  = 
23,987)―including individuals HC/SCD, MCI, and 
ADD―using the R package lavaan  [50]. The compos-
ite scores were adjusted for age, sex, and years of formal 
education effects using linear regression models. Further 
details on the composites and their calculation can be 
found in the Appendix A.

The memory composite was created considering the 
variables long-term and recognition memory of the 
Word List subtest from the Wechsler Memory Scale, 
third version (WMS-III)  [51]. The attention composite 
included the Digit Forward and Digit Backwards from 
the Wechsler Adult Intelligence Scale, Third Edition 
(WAIS-III)  [52]. To define the visuospatial functions, 
the 15-Objects Test  [53], the Poppelreuter-type overlap 
figures  [54], and the Luria’s Clock test  [55] were con-
sidered. The executive functions were calculated from 
the Phonetic and Semantic Verbal fluencies [56, 57] and 
the Automatic Inhibition subtest of the Syndrom Kurtz 
Test (SKT)  [58]. Finally, language function included the 
abbreviated 15-item naming test from the Boston Nam-
ing Test (BNT) [59] and the Verbal Comprehension and 
Repetitions [7].

Machine Learning modeling
In the present study, two different problems were 
addressed. Firstly, classification models were devel-
oped to differentiate between clinical phenotypes. Sec-
ondly, regression models were implemented to predict 
the cognitive composites outlined in the “Calculation of 
cognitive composites” section. The models used in each 
problem are described below.

For the classification problems, the following models 
were used: random forest (RF), extreme gradient boost-
ing (XGB), support vector machine (SVM), and k-nearest 
neighbor (KNN). Due to the high dimensionality of the 
input data, the SVM and KNN algorithms were com-
bined with a previous feature selection step. The feature 
selection aims to identify the optimal combination of var-
iables by eliminating those that are irrelevant/redundant. 
We performed feature selection using a wrapper-based 
approach involving two sequential stages: candidate 
subset generation (SG) and subset evaluation (SE)  [60]. 
For the SG component, we utilized genetic algorithms 
(GA), a population-based metaheuristic optimization 
strategy inspired by the natural selection process  [61]. 
For the SE, we considered the mean balanced accuracy 
( BA = 0.5 · [sensitivity+ specificity] ) obtained through 
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fivefold cross-validation (CV) from predictions derived 
from a Gaussian naive Bayes classifier. Feature selection 
was not applied for the RF and XGB models because 
these types of algorithms, not based on distance like SVM 
or KNN, are more robust to the high dimensionality.

Moreover, the hyperparameters for RF, XGB, and 
SVM models were determined using a hyperparameter 
optimization (HPO) framework. A nested ten-fold CV 
was applied to the training set to perform the HPO. The 
HPO was implemented using the Optuna open-source 
library [62], applying a Bayesian optimization (BO) using 
a tree-structured Parzen estimator (TPE) as a surrogate 
model  [63]. Since the KNN model had a small number 
of hyperparameters, they were optimized using a grid 
search. In addition, given the high-class imbalance in the 
classification problems, the KNN was combined with the 
synthetic minority over-sampling technique (SMOTE) 
applied to the minority class [64].

For the regression tasks, the same models adapted for 
predicting quantitative variables (RF, XGB, GA-SVM, 
and GA-KNN) were used. In this case, the SE step of the 
feature selection strategy used in the GA-SVM and GA-
KNN was performed using a KNN regressor minimizing 
the mean squared error (MSE). For the BO-TPE, the MSE 
evaluated by a nested tenfold CV applied on the training 
set was minimized. The optimized hyperparameters for 
each model and the configuration details for BO-TPE and 
the GAs are provided in Appendix B.

All models were implemented using Python (v3.9.16). 
The scikit-learn library was utilized for RF, KNN, 
and SVM algorithms  [65]. The XGB package  [66] was 
employed for the XGB models. Finally, for the GAs, the 
home-made library pywin EA2 available on GitHub was 
used.

Experimental setup
Among the main objectives of this study was to differen-
tiate clinical phenotypes. For this purpose, the following 
problems were addressed: differentiation of individuals 
with a preserved cognitive state (SCD) from those with 
cognitive impairment (MCI and ADD), discrimination 
between SCD and ADD, classification of MCI and ADD, 
and the distinction between SCD and MCI. For the pre-
diction of the cognitive composites, models were fitted 
on each of the five composites mentioned in the “Calcu-
lation of cognitive composites” section.

All models were evaluated using a ten-fold CV. Per-
formance metrics were reported as the mean values 
obtained on the test set. The HPO and feature selec-
tion techniques, as described in the “Machine Learning 
modeling” section, were implemented using a nested 
CV approach on the training set to prevent overfit-
ting. For classification tasks, CV was conducted with 

class stratification. Figure 1 illustrated the training and 
model validation pipeline applied for all the algorithms.

The following performance metrics were considered 
for the classification problems:

where TP and TN represent true positives and negatives 
and FN and FP stand for false positives and negatives. 
For the regression problems, the correlation coefficient 
between model predictions ( ̂Y ∈ R

n ) and true values 
( Y ∈ R

n ) was considered, as well as the following metrics:

with Var[ · ] being the variance and |Pv
95% − Pv

5%| repre-
senting the range of the variable v between the 95% and 
5% percentiles. Consequently, the RMEA allows contex-
tualizing the magnitude of the MEA in relation to the 
magnitude of the analyzed variable.

As input variables for all models, the 176 variables 
extracted from the voice recordings (the  “Acquisition 
and preprocessing of speech data” section) and soci-
odemographic variables including age, years of educa-
tion, and sex were considered. For the distance-based 
models such as SVM and KNN, the variables were 
standardized to z-scores based on the statistics of the 
training data.

All experiments were conducted on the Ace comput-
ing’s cluster, composed of 368 CPU cores and 1280 GB 
of RAM running on Rocky Linux OS (v8.6).

(1)Sensitivity =
TP

TP+ FN
,

(2)Specificity =
TN

TN+ FP
,

(3)Precision =
TP

TP+ FP
,

(4)
Balanced accuracy (BA) =

Sensitivity+ Specificity

2
,

(5)F1-score (F1) = 2 ·
Precision · Sensitivity

Precision+ Sensitivity
,

(6)Mean absolute error (MAE) =
1

n
·

n

i=1

|Yi − Ŷi| ,

(7)Explained variance (EV) = 1−
Var[Y − Ŷ ]

Var[Y ]
,

(8)Relative MEA (RMEA) =
MAE

|Pv
95% − Pv

5%|
,

https://github.com/FernandoGaGu/pywinEA2
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Results
Cognitive composites analysis
As mentioned in the  “Calculation of cognitive com-
posites” section, five cognitive composites were 
derived from the neuropsychological variables of the 
NBACE  [7]. These composites encompassed the cog-
nitive domains of attention, executive functions, lan-
guage, memory, and visuospatial functions. The SEM 
used for their estimation showed good fit indices 
supporting the consistency of the proposed factorial 
structure (comparative fit index = 0.93, Tucker-Lewis 
index = 0.92, mean square error of approximation = 
0.07) [47].

Figure  2 illustrates the composite values based on 
clinical diagnosis. Using linear regression models, 
significant differences in all composite scores across 
different diagnostic groups were found (Bonferroni 
adjusted p-value < 0.05) (refer to Appendix  C for fur-
ther details). Across all cognitive domains, as expected, 
SCD subjects exhibited the highest composite scores, 
while individuals with MCI displayed intermediate 
ones, and the ADD group showed the lowest composite 
values.

Table  2 presents the discriminatory performance 
achieved using a logistic regression model for each 

composite. The mean values obtained on the test set 
from ten repetitions of ten-fold CV are displayed. As 
expected, all composites exhibited a strong discrimina-
tory ability between SCD and ADD individuals. They 
also offered a clear, although lower, differentiation of 
SCD and MCI subjects. Notably, the composites of 
executive functions, language, memory, and visuospa-
tial functions provided the best discrimination between 
SCD and ADD individuals (AUC > 0.98). The atten-
tion composite showed a lower predictive performance 
(AUC ≈ 0.95). In the detection of MCI individuals, the 
values were slightly lower. The executive function com-
posite showed the highest predictive capacity (AUC ≈ 
0.93). The visuospatial, language, and memory compos-
ite scores also demonstrated good discriminatory ability 
(AUC > 0.90). The attention composite showed the poor-
est performance (AUC ≈ 0.84).

Spontaneous speech for differentiating clinical 
phenotypes
The results of the top-performing models for distin-
guishing clinical phenotypes are presented in Table  3. 
Due to significant imbalances between classes, the 
models with the highest F1-score value were selected. 
The receiver operating characteristic (ROC) curves 

Fig. 1 Pipeline applied to train and evaluate the different models used in this study. The input data were divided into ten folds according 
to a cross‑validation (CV) scheme. Feature selection and hyperparameter optimization (HPO) were conducted using a nested CV applied 
to the training data. The resulting model from this nested CV was then used to make the predictions on the test set. The final performance metrics 
were calculated based on the average performance of the predictions obtained on the test set
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for each problem, incorporating all algorithms, are 
depicted in Fig. 3. For the models that integrated GAs, 
the selected variables are detailed in the Supplementary 
material. Appendix  E provides a summary of the fea-
tures that were consistently chosen by the GAs during 
the CV.

Regarding the algorithms implemented, the tree-
based models showed the best performance for most 
of the problems. Specifically, the RF obtained the high-
est F1 for the differentiation between SCD and MCI/
ADD, the XGB achieved the best results in SCD-ADD 
and MCI-ADD problems, and the GA-SVM model 

outperformed the rest of the algorithms for distinguish-
ing SCD and MCIs. The GA-KNN combination consist-
ently demonstrated the poorest performance across all 
the problems (refer to Appendix D for further details).

When distinguishing between SCD and subjects 
with cognitive impairment (MCI/ADD), an F1-score of 
0.85 was achieved. In this comparison, sensitivity and 
specificity were close to 0.75. The performance notably 
improved when differentiating between SCD and ADD, 
reaching an F1-score of 0.92, with a sensitivity of approx-
imately 0.90 and specificity of around 0.80. In contrast, 
in all cases involving the identification of MCI subjects, 

Fig. 2 Cognitive composite values were obtained through structural equation models (SEM) and adjusted for age, sex, and years of education. The 
scores were represented based on the diagnostic group. Abbreviations: SCD, subjective cognitive decline; MCI, mild cognitive impairment; ADD, 
Alzheimer’s disease dementia

Table 2 Discriminatory capacity of cognitive composites for differentiating clinical phenotypes using subjects with subjective 
cognitive decline (SCD) as reference

Mean value obtained over the test set from ten repetitions of tenfold cross‑validation. A logistic regression model was employed to predict clinical phenotypes. The 
composite scores were considered as independent variables

 Abbreviations: AUC , area under the curve; MCI, mild impairment; ADD, Alzheimer’s disease dementia

Composite Accuracy Sensitivity Specificity AUC 

ADD MCI ADD MCI ADD MCI ADD MCI

Attention 0.87 0.74 0.86 0.74 0.89 0.75 0.95 0.84

Executive function 0.97 0.84 0.97 0.83 0.98 0.91 0.99 0.93

Language 0.96 0.81 0.95 0.79 0.98 0.91 0.99 0.91

Memory 0.98 0.81 0.98 0.80 0.97 0.87 0.99 0.90

Visuospatial function 0.95 0.79 0.95 0.77 0.98 0.92 0.99 0.91
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the performance decreased. When discerning between 
MCI and SCD, a specificity of 0.77 was reached, but at 
the expense of a high rate of false positives (sensitivity of 

0.62). Moreover, the specificity for distinguishing ADD 
from MCI decreased to 0.71 while maintaining a low 
sensitivity (< 0.65).

Fig. 3 The average values of the receiver operating characteristic (ROC) curves, obtained for the models discussed in the “Machine learning 
modeling” section, are presented. The ROC curves were calculated on the test set from a ten‑fold cross‑validation. The analyzed classification tasks 
encompassed: A discrimination between subjective cognitive decline (SCD) and patients with mild cognitive impairment (MCI) or Alzheimer’s 
disease dementia ADD, B SCD vs ADD, C SCD vs MCI, D and MCI vs ADD. Abbreviations: RF, random forest; XGB, extreme gradient boosting; GA, 
genetic algorithm; SVM, support vector machine; and KNN, k‑nearest neighbor

Table 3 Average values of the classification metrics computed on the test set for the models achieving the highest F1‑score in each 
of the problems

Abbreviations: BA, balanced accuracy; F1, f1‑score; RF, random forest; XGB, extreme gradient boosting; GA-SVM, genetic algorithm‑support vector machine; SCD, 
subjective cognitive decline; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia

Problem Best model BA F1 Precision Sensitivity Specificity

SCD vs cognitive impair‑
ment

RF 0.75 0.85 0.97 0.76 0.73

SCD vs ADD XGB 0.84 0.92 0.94 0.90 0.79

SCD vs MCI GA‑SVM 0.69 0.84 0.93 0.77 0.62

MCI vs ADD XGB 0.67 0.63 0.56 0.72 0.63
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Finally, we conducted a subanalysis excluding sociode-
mographic information and fitting the top-performing 
models based purely on physical-acoustic variables. In 
this scenario, we observed a decline in performance 
compared to the previous models. Specifically, for dis-
tinguishing SCD from individuals with cognitive impair-
ment, the F1-score dropped to 0.80 (from 0.85). In the 
discrimination between SCD and ADD, the F1-score 
decreased to 0.81 (from 0.92). For identifying SCD and 
MCI, the F1-score was similar (0.78 vs 0.77). Finally, in 
the classification of MCI and ADD, the F1-score moved 
to 0.55 (from 0.63).

Spontaneous speech for predicting cognitive domains
The predictions given by the best regression models 
used for estimating the five cognitive scores outlined in 
the  “Calculation of cognitive composites” section, are 
collected in Fig. 4. Alternatively, the different regression 
metrics described in the “Experimental setup” section are 
presented in Table 4. The values of the former table were 
stratified by clinical phenotype.

Overall, the tree-based models exhibited superior 
performance. The RF model achieved the lowest MAE 
in predicting the attention score, while the XGB out-
performed the other algorithms for predicting the 
remaining cognitive domains. Detailed results of all the 
models can be found in Appendix D. Furthermore, the 

variables selected by the GAs for the SVM and KNN 
models are listed in the Supplementary material and 
Appendix E.

A consistent correspondence between the model pre-
dictions and the actual values for each cognitive domain 
was observed. The language composite regression exhib-
ited the best predictive performance, with a correla-
tion coefficient of 0.57, an EV of 32.3%, and an RMAE 
of 17.8%. Similarly, for the executive and visuospatial 
functions, comparable results were achieved, with cor-
relations above 0.56, EVs greater than 31.0% and RMAEs 
below 18.0%. The models also performed well for the 
memory and attention composites, although the corre-
spondence between the predictions and the actual val-
ues decreased slightly (correlation < 0.5). When stratified 
by clinical diagnosis, the models performed better, with 
a fewer MAE, in subjects with MCI across all cognitive 
domains. The predictions for the SCD group showed 
the highest errors in attention, executive function, and 
memory composites. In contrast, the ADD group exhib-
ited the highest error in the composites of language and 
visuospatial functions. Figure  5 illustrates the predic-
tion distributions generated by the models stratified by 
the diagnostic group. The regression models predicted 
higher values in all the composites for the SCD, lower 
values for the MCIs, and a reduced estimate for the ADD 
individuals.

Fig. 4 Correlation between the predicted values generated by the models and the actual values for each cognitive domain under examination. 
The predictions from the model with the lowest mean absolute error (MAE) were represented. The values depicted in the figure correspond 
to the predictions made on the test set from a ten‑fold cross‑validation. To minimize the influence of outliers in the representation, the scales 
of both the X and Y axes were adjusted considering the 95th percentile of the true values. Abbreviations: ρ , correlation between model predictions 
( ̂Y ) and true values (Y); R2 , coefficient of determination; RF, random forest; XGB, extreme gradient boosting
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Fig. 5 Distribution of predictions given by the models stratified by clinical diagnosis for each of the cognitive functions. The Y‑axis represents 
a kernel density estimation (KDE) of the model predictions distribution (X‑axis). Abbreviations: SCD, subjective cognitive decline; MCI, mild cognitive 
impairment; ADD, Alzheimer’s disease dementia; RF, random forest; XGB, extreme gradient boosting

Table 4 Regression metrics obtained by the best models in the prediction of each cognitive domain

For each cognitive domain, the regression metrics obtained by the best models are presented. The random forest (RF) was the best model at predicting the attention 
score, while the extreme gradient boosting (XGB) performed better on all other scores. The metrics were calculated for the entire sample and stratified by clinical 
phenotype

 Abbreviations: MAE, mean absolute error; RMAE, relative MAE (described in the “Experimental setup” section); EV, explained variance; SCD, subjective cognitive 
decline; MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia

 a The EV is not shown when the variance of the true values was lower than the variance of the residuals

Sample Metric Attention Executive function Language Memory Visuospatial 
function

All RMAE (%) 18.007 17.421 17.801 18.330 17.880

MAE 0.474 0.477 0.458 0.530 0.515

Correlation 0.468 0.563 0.569 0.499 0.574

EVa (%) 21.778 31.696 32.345 24.924 32.964

SCD RMAE (%) 22.063 23.295 16.736 26.588 18.401

MAE 0.580 0.638 0.431 0.769 0.530

Correlation 0.062 0.082 0.009 0.076 0.002

EVa (%) – – – – –

MCI RMAE (%) 16.282 15.339 15.573 17.023 16.125

MAE 0.428 0.420 0.401 0.492 0.464

Correlation 0.370 0.477 0.487 0.383 0.485

EVa (%) 12.494 17.759 17.559 10.321 18.114

ADD RMAE (%) 19.634 19.141 21.483 18.265 20.440

MAE 0.517 0.524 0.553 0.528 0.589

Correlation 0.243 0.205 0.330 ‑0 036 0 347

EVa (%) 3.668 – 6.192 – 6.560
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Similar to the classification problems (see the  “Spon-
taneous speech for differentiating clinical phenotypes” 
section), we investigated the influence of demographic 
variables on the best models. For this purpose, we elimi-
nated the variables of age, years of formal education, 
and sex from the models. In this context, we observed a 
marginal decline in their performance, while still main-
taining correlations between predicted and true values 
that closely mirrored those obtained when demographic 
information was integrated. Specifically, for the atten-
tion composite, the correlation and EV were at 0.43 and 
18.3%, respectively. Concerning executive function, the 
correlation and EV values shifted to 0.51 and 26.0%. The 
performance scores for the memory composite declined 
to 0.42 and 18.0%. For the language composite, the new 
values were 0.50 and 25.3%. Finally, for the visuospatial 
function, the correlation and EV dropped to 0.51 and 
26.3% respectively.

Discussion
The present study shows that the automated analysis of 
a brief SS test using ML techniques consistently detects 
cognitive alterations along the AD spectrum. To the 
best of our knowledge, this is the first study with a large 
sample from a clinical setting exploring the association 
between SS and cognitive performance across neuropsy-
chological domains.

Firstly, several ML models were applied to distinguish 
clinical phenotypes associated with AD. Our models 
focused on differentiating between individuals diagnosed 
with SCD, MCI, and ADD. The results demonstrated 
a good differentiation between SCD individuals from 
those with already manifest cognitive impairment (MCI/
ADD) (AUC = 0.84) as well as between SCD and ADD 
patients (AUC = 0.93) (Table 3). These findings are con-
sistent with previous studies  [17–22, 67–71]. For exam-
ple, in [20], they achieved an accuracy of 80.28% on the 
test set for detecting subjects with dementia using infor-
mation derived from The Cookie Theft Picture description 
task. In the same line, in [17], they reached an AUC of 
0.86 for discriminating between HC and ADD subjects. 
Similarly, the authors of [21] obtained an AUC of 0.93 for 
distinguishing HC individuals from those with dementia 
and an AUC of 0.88 for differentiating dementia and non-
dementia subjects. Therefore, our findings provide new 
evidence supporting the potential of SS for the identifica-
tion of individuals with ADD.

In contrast, the models exhibited a moderate pre-
dictive performance for identifying individuals with 
MCI (MCI vs SCD: AUC = 0.80, MCI vs ADD: AUC 
= 0.73). These findings are consistent with the results 

previously reported in the literature  [18, 21, 23–25]. 
In their study, [18] identified MCI subjects with a BA 
of 0.65, slightly lower than the results presented in 
this work (BA = 0.69, see Table  3). With subtly bet-
ter performance, in [23], they used linguistic features 
extracted from transcripts, reporting a specificity and 
sensitivity of 78% and 74%, respectively. However, it is 
important to note that their study was supported by 
a considerably smaller sample size than ours, limiting 
conclusions about the model’s accuracy. Consistent 
with the findings of this work, in [21], they observed 
that the identification of subjects with MCI was nota-
bly more challenging compared to detecting dementia, 
obtaining an AUC of 0.74. Overall, the difficulties in 
identifying MCI stem from its inherent heterogeneity, 
encompassing different subtypes and potential under-
lying etiologies. Furthermore, the cognitive deficits in 
this population are subtle and can be influenced by fac-
tors such as age, education level, and individual cogni-
tive abilities, often masking the underlying MCI status. 
Consequently, the boundary between normal cognition 
and MCI remains inherently fuzzy, limiting the perfor-
mance of the models [42]. Future studies should strive 
to overcome these limitations and enhance the abil-
ity to identify the cognitive changes that emerge dur-
ing the MCI stage. Nevertheless, our results, based 
exclusively on the physical-acoustic properties of the 
sound, demonstrate that the application of Artificial 
Intelligence (AI) techniques to SS data offers valuable 
insights for identifying patients with MCI.

This study also investigated the potential to estimate 
cognitive performance using the paralinguistic variables 
derived from SS tests. For this purpose, neuropsycho-
logical tests from a standardized battery of neuropsy-
chological measures were grouped into five composite 
scores representing the cognitive domains of attention, 
executive functions, language, memory, and visuospa-
tial functions [7]. These neurocognitive composites were 
the target variables of the ML models. As outlined in 
the “Cognitive composites analysis” section, the resulting 
composites discriminate between the different diagnos-
tic groups. This discriminatory ability was expected, as 
the neuropsychological tests forming the composites are 
partially instrumental in defining the diagnoses. Never-
theless, these results show that their grouping into cog-
nitive domains is consistent and effectively summarizes 
the information from the individual neuropsychologi-
cal tests into higher cognitive functions. Therefore, this 
subanalysis supports the use of these neuropsychological 
groupings to describe the different cognitive functions 
analyzed.
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The algorithms used to infer the neurocognitive com-
posites based on the SS tests and physical-acoustic 
features showed a strong predictive ability (Fig.  4). 
In general, we observed that the models were profi-
cient in predicting the different cognitive scores with 
a correlation close to 0.5 relative to the actual values 
(Table 4). Nevertheless, our findings indicated a signifi-
cant increase in model errors within the SCD and ADD 
groups. For example, the correlation between model 
predictions and actual values in SCD subjects remained 
poor, likely due to the ceiling effect present in many of 
the neuropsychological tests used to construct the com-
posites or an overrepresentation of MCI subjects within 
the sample. However, despite this, we observed a mean-
ingful alignment of the model predictions with the dif-
ferent disease stages, associating higher values for SCD 
subjects, declining scores in the MCI stage, and lower 
estimates for ADD patients (Fig. 5). This result becomes 
especially relevant for the remote detection of cogni-
tive impairment in the general population, as the SS 
test can be completed within an average duration of 
110 s, and the correspondence between model predic-
tions and disease stages is consistent. In addition, the 
increased predictive ability obtained for MCI patients 
(see Table 4) is particularly significant, as this stage holds 
great importance for developing screening tools, recruit-
ing patients for clinical trials, and monitoring disease 
progression [2].

Regarding the models used, our results also provided 
insightful findings. First, we noted that tree-based algo-
rithms, specifically RF and XGB, consistently surpassed 
distance-based algorithms (i.e., SVM and KNN) across 
tasks. We hypothesize that this superiority can be attrib-
uted to the high dimensionality of the input data and 
the robust nature of tree-based algorithms in handling 
non-smooth distributions  [66, 72]. Moreover, despite 
incorporating a prior feature selection step to mitigate 
the sensitivity of distance-based algorithms to the high 
dimensionality, the GAs consistently selected a high 
number of variables. This elevated number of input fea-
tures is presumably responsible for the poorer perfor-
mance achieved by these models. It suggests that the 
effectiveness of feature selection techniques may not 
scale optimally with the increasing number of input 
variables [60].

On the other hand, we observed that excluding 
demographic variables from the models harmed their 
performance. These findings underscore the poten-
tial advantages of incorporating contextual informa-
tion about the patient in SS and AI-based screening 
tools, enabling the algorithms to uncover nonlinear 

interactions among input variables [19, 21]. For instance, 
it is reasonable to expect that a specific response pat-
tern on an SS test has distinct implications for an older 
non-literate individual compared to a young person with 
a high level of education. However, additional inves-
tigation is needed to evaluate the standalone predic-
tive capacity of SS and the consequences of integrating 
contextual information into the models. In this regard, 
special attention should be directed towards variables 
that can be readily and efficiently collected through a 
remotely administered protocol, such as self-reported 
information on comorbidities or a family history of neu-
rodegenerative diseases.

Our study shows that an automated analysis of 
speech based on paralinguistic features and ML tech-
niques has the potential for detecting and assessing AD 
stages. Compared to other modalities, such as neuro-
imaging or plasma biomarkers, SS-based protocols 
represent a fast, cost-effective, and accessible tool for 
evaluating the patient’s cognitive status despite lower 
diagnostic accuracy  [10, 73]. The SS protocol is non-
invasive, does not require expensive equipment or 
highly trained personnel, and is a patient-friendly pro-
cedure. Furthermore, beyond the implementation of SS 
as an early screening tool, periodic assessment of SS 
could provide valuable insights into the decline in dif-
ferent cognitive domains on a simple and rapid basis. 
Overall, it opens up new opportunities for implement-
ing novel and widely accessible to the general popula-
tion screening strategies.

From a methodological standpoint, our study ben-
efits from using standardized SS tests and paralinguis-
tic features, facilitating the replication of our findings. 
Moreover, unlike previous studies, we developed mod-
els capable of inferring cognitive performance from SS 
data using a large sample of subjects at different disease 
stages. In addition, we employed optimized and transpar-
ently evaluated ML models, providing detailed fit indices 
that enable easy comparison with other studies. Collec-
tively, our work presents a promising avenue for leverag-
ing automated speech analysis in AD, offering potential 
benefits for the early detection and monitoring of cogni-
tive decline.

Nevertheless, this study has certain limitations. Firstly, 
despite using a large sample of subjects, especially com-
pared with most current studies [17, 19, 20, 23, 68, 71], 
the generalization of our results should be confirmed by 
future prospective analyses involving larger samples and 
individuals from different cohorts and in different lan-
guages. This recurrent issue is commonly encountered 
in studies employing ML techniques and represents 



Page 13 of 20García‑Gutiérrez et al. Alzheimer’s Research & Therapy           (2024) 16:26  

a significant challenge for potential translation to the 
clinical setting. Secondy, our study was conducted using 
data generated in a controlled clinical environment, 
ensuring the acquisition of high-quality audio data. 
However, the remote administration of the SS protocol 
is expected to introduce noise and other factors that 
may potentially impact the performance of the models. 
Consequently, the evaluation of the effectiveness of the 
proposed approach with remotely generated data will 
be an aspect of interest to be explored in future stud-
ies. Moreover, our study relies solely on a restricted set 
of paralinguistic features. As demonstrated by other 
researchers [18, 19, 21], using more diverse data derived 
from speech analysis, such as employing NLP tech-
niques  [13], could substantially enhance the perfor-
mance of predictive models. For future investigations, 
it may be worthwhile to consider including broader 
and more diverse SS parameters to improve the perfor-
mance established in this study. Finally, this work has 
a cross-sectional design due to the restricted access to 
follow-up information. Future research endeavors will 
be necessary to explore how longitudinal analysis of 
SS data can provide relevant insights into predicting 
aspects related to the AD continuum, and differentiate 
ADD from other types of dementia.

Conclusion
In conclusion, the convergence of Artificial Intelligence 
advancements and the rapid digitization witnessed in 
recent years has set the stage for developing new tech-
nologies capable of monitoring AD in a simple and 
increasingly accessible manner. Among these innovative 
technologies, SS protocols, such as the one employed in 
this study, stand out. These technical breakthroughs hold 
great potential in enabling early and precise detection of 
cognitive changes within the AD continuum, ultimately 
facilitating remote access to specialists and personalized 
therapies. Our study provides new evidence to the field, 
demonstrating the feasibility of inferring cognitively 
impaired performance across different cognitive func-
tions from SS data, establishing a solid foundation for 
future developments in predictive models.

Appendix A. Calculation of cognitive composites
Machine Learning (ML) models were developed for 
the prediction of neuropsychological composites. This 
appendix details the calculation of the composite scores 
generated from the Neuropsychological Battery from 
Fundació Ace (NBACE) battery [7].

As mentioned in the main manuscript, the memory 
composite was created considering the variables long-
term and recognition memory of the Word List sub-
test from the Wechsler Memory Scale, third version 
(WMS-III)  [51]. The attention composite included 
the Digit Forward and Digit Backwards from the 
Wechsler Adult Intelligence Scale, Third Edition 
(WAIS-III)  [52]. To define the visuospatial functions, 
the 15-Objects Test  [53], the Poppelreuter-type over-
lap figures  [54], and the Luria’s Clock test  [55] were 
considered. The executive functions were calculated 
from the Phonetic and Semantic Verbal fluencies  [56, 
57] and the Automatic Inhibition subtest of the Syn-
drom Kurtz Test (SKT) [58]. Finally, language function 
included the abbreviated 15-item naming test from the 
Boston Naming Test (BNT) [59] and the Verbal Com-
prehension and Repetitions [7]. The subtest measuring 
the time taken to complete the SKT was transformed 
to a logarithmic scale for structural equation models 
(SEM) fitting.

All available baseline observations collected in Ace 
were used for the composite scores calculation. Healthy 
controls (HC) and individuals with subjective cognitive 
decline (SCD) with a diagnosis of preserved cognition 
(CDR = 0), patients with mild cognitive impairment 
(MCI) (CDR = 0.5), and subjects with dementia due to 
Alzheimer’s disease (ADD) (CDR ≥ 1) were selected. 
Table 5 lists the demographic characteristics of the sub-
jects used to calculate the composite scores. The syntax 
of the structural equation model used to calculate the 
composite scores is given in Listing 1. The model fitted 
with the entire Ace database was subsequently used to 
infer the composite scores for the sample of subjects 
used for the study.

Table 5 Clinical and sociodemographic characteristics of the 
sample used to estimate the parameters of the structural equation 
models used to calculate the composite scores

All sample HC/SCD MCI ADD

Sex (% females) 67.09 69.73 62.79 71.04

Age (mean (SD)) 75.54 (9.93) 64.51 (9.66) 73.85 (9.23) 80.65 (7.05)

Years of formal edu‑
cation (mean (SD))

7.28 (4.60) 11.08 (4.32) 7.54 (4.42) 5.88 (4.18)

MMSE (mean (SD)) 24.00 (4.72) 29.13 (1.25) 26.21 (2.94) 20.08 (3.85)

Abbreviations: SD, standard deviation; MMSE, Mini‑Mental State Examination
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Listing 1 Syntax (according to the laavan library) used to calculate 
composite scores

Appendix B. Machine Learning model 
hyperparameters
This appendix details the hyperparameters of all the ML 
models used in the main manuscript. Table  6 lists the 
hyperparameters of the algorithms used for the classifica-
tion and regression problems. The library with the imple-
mentation of the genetic algorithm (GA) used is available 
on GitHub. Table 7 summarizes the hyperparameters of 
the GA. The Scikit- learn [65] library was used for models: 
random forest, support vector machines, and k-nearest 
neighbors. For the XGBoost algorithm, the xgboo st [66] 
library was employed. The hyperparameter optimization 
(HPO) was carried out using the optuna [62] library. The 
definition of the hyperparameters listed in the table can 
be found in the documentation of the respective libraries.

Table 6 Hyperparameters of classification and regression models

Model Parametera HPOb Value/search  spacec

Random forest Number of estimators ‑ 200

Class  weightd ‑ Balanced

Max depth TPE {2, . . . , 10}

Min samples split TPE {2, . . . , 40}

Min samples leaft TPE {2, . . . , 30}

Max samples TPE [0.5, 1.0]

Max features TPE [0.5, 1.0]

XGBoost Number of estimators ‑ 200

Max depth TPE {2, . . . , 10}

Learning rate TPE [0.01, 0.3]

Gamma TPE [0.0, 100.0]

Min child weight TPE [0.0, 100.0]

Subsample TPE [0.2, 1.0]

colsample_bytree TPE [0.2, 1.0]

colsample_bynode TPE [0.2, 1.0]

L1 regularization TPE [0.1, 10.0]

L2 regularization TPE [0.1, 10.0]

Scale positive  weightd TPE [0.1, 10.0]

Support vector 
machines

Kernel ‑ Polynomial

C TPE [1e‑05, 1e02]

Degree TPE {1, . . . , 10}

Class  weightd TPE [0.05, 0.95]

Coef0 TPE [0.0, 10.0]

K‑nearest neighbors Number of neighbors Grid search {4, . . . , 30}

Weights Grid search {Uniform, Distance}

For the hyperparameter optimization conducted using tree‑structured Parzen 
estimator (TPE), a total of 1000 configurations were sampled, with the initial 500 
being randomly selected

 aHyperparameters not listed in this table were selected at their default value

 bHyperparameters that were left fixed are specified by “‑”

 c{·} indicates sampling of categorical values, while [·] indicates sampling of real 
values

 dParameter only considered for classification problems

https://github.com/FernandoGaGu/pywinEA2
https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/python/python_intro.html
https://optuna.org/
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Table 7 Hyperparameters of the genetic algorithm used to 
perform feature selection

Parameter Value Description

Generations 1,000 Number of algorithm 
iterations

Population size 300 Number of candidate 
solutions (aka individu‑
als) in the population

Individual representa‑
tion

Binary The candidate solutions 
were represented 
as a binary array 
where a value of 1 
indicated the presence 
of a feature and a value 
of 0 its absence

Selection Tournament selection 
(k = 2)

Stochastically, k 
individuals are selected 
from the whole 
population. From this 
selection, the indi‑
vidual with the best 
fitness value is selected 
for the next generation. 
This process is repeated 
until fill established 
population size

Elitism 30 Individuals who will 
pass to the next genera‑
tion without undergo‑
ing the selection 
process

Mutation Bit‑flip (probability 
= 0.05)

In each genera‑
tion, each position 
of the candidate solu‑
tion inverts its value 
according to the speci‑
fied probability

Cross‑over One‑point (probabil‑
ity = 0.5)

In each generation, two 
individuals are selected 
with a certain probabil‑
ity and their information 
is combined by splitting 
the solution by a cer‑
tain cut‑off point. The 
resulting fragments 
are used to generate 
the offspring

Appendix C. Cognitive composites analysis
This appendix collects the results of the regression mod-
els used to analyze the composites generated in the stud-
ied sample. Table  8 contains the values represented in 
Fig. 2 of the main manuscript.

Table 8 Regression model results for the study sample, 
controlling for sex, age, and years of formal education

Composite Condition CDR Coef.a p-value 95%CI

Attention SCD 0.0 1.19 < 0.001 [1.10, 1.29]

MCI 0.5 − 0.73 < 0.001 [− 0.83, − 0.62]

Mild ADD 1.0 − 1.15 < 0.001 [− 1.26, − 1.04]

Moderate 
ADD

2.0 − 1.47 < 0.001 [− 1.60, − 1.33]

Executive 
function

SCD 0.0 1.48 < 0.001 [1.39, 1.57]

MCI 0.5 − 0.91 < 0.001 [− 1.01, − 0.81]

Mild ADD 1.0 − 1.58 < 0.001 [− 1.69, − 1.48]

Moderate 
ADD

2.0 − 1.90 < 0.001 [− 2.03, − 1.77]

Language SCD 0.0 1.15 < 0.001 [1.05, 1.24]

MCI 0.5 − 0.63 < 0.001 [− 0.73, − 0.53]

Mild ADD 1.0 − 1.31 < 0.001 [− 1.42, − 1.20]

Moderate 
ADD

2.0 − 1.67 < 0.001 [− 1.81, − 1.54]

Memory SCD 0.0 1.53 < 0.001 [1.43, 1.62]

MCI 0.5 − 1.01 < 0.001 [− 1.12, − 0.91]

Mild ADD 1.0 − 1.78 < 0.001 [− 1.89, − 1.67]

Moderate 
ADD

2.0 − 1.95 < 0.001 [− 2.08, − 1.82]

Visuospatial 
function

SCD 0.0 1.22 < 0.001 [1.12, 1.33]

MCI 0.5 − 0.73 < 0.001 [− 0.84, − 0.62]

Mild ADD 1.0 − 1.49 < 0.001 [− 1.61, − 1.37]

Moderate 
ADD

2.0 − 1.88 < 0.001 [− 2.02, − 1.73]

Abbreviations: CDR, Clinical Dementia Rating; CI, confidence interval

 aCoefficients of the regression models considering the composite value as 
the dependent variable and the dummy coding of the clinical diagnosis as the 
independent variable. The models were adjusted for sex, age, and educational 
level. The coefficients indicate the average value of the composite associated 
with each group adjusting for the covariates

Appendix D. Machine Learning model results
This appendix summarizes the results obtained by 
the classification (Table  9) and regression models 
(Table  10) applied for the differentiation of clinical 
phenotypes and the prediction of composite cogni-
tive scores, respectively. For each model, the average 
results obtained on the test set of a ten-fold cross-vali-
dation are shown.
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Table 9 Average values of the classification metrics computed 
on the test set for the binary classification problems

Problem Model BA F1 Sen Spe Pre

SCD vs altered RF 0.749 0.854 0.764 0.733 0.967

XGB 0.739 0.884 0.819 0.659 0.960

GA‑SVM 0.725 0.875 0.805 0.644 0.958

GA‑KNN 0.680 0.742 0.605 0.756 0.961

SCD vs ADD RF 0.820 0.916 0.900 0.741 0.933

XGB 0.842 0.920 0.898 0.785 0.944

GA‑SVM 0.830 0.893 0.844 0.815 0.948

GA‑KNN 0.734 0.774 0.661 0.807 0.932

SCD vs MCI RF 0.692 0.840 0.770 0.615 0.924

XGB 0.680 0.807 0.715 0.644 0.925

GA‑SVM 0.693 0.841 0.772 0.615 0.925

GA‑KNN 0.628 0.656 0.508 0.748 0.925

MCI vs ADD RF 0.668 0.614 0.669 0.668 0.569

XGB 0.670 0.625 0.715 0.625 0.555

GA‑SVM 0.635 0.595 0.704 0.567 0.516

GA‑KNN 0.564 0.532 0.654 0.475 0.449

Abbreviations: BA, balanced accuracy; F1, f1‑score; RF, random forest; XGB, 
extreme gradient boosting; GA-SVM, genetic algorithm‑support vector 
machine; GA-KNN, genetic algorithm‑K‑nearest neighbors

Table 10 Regression metrics obtained in the prediction of the 
composite cognitive scores

Composite Model RMAE (%) MAE Correlation EV (%)

Attention RF 18.0 0.474 0.468 21.8

XGB 18.0 0.475 0.464 21.6

GA‑SVM 18.8 0.495 0.407 14.9

GA‑KNN 19.2 0.506 0.352 11.4

Executive function RF 17.7 0.486 0.552 30.1

XGB 17.4 0.477 0.563 31.7

GA‑SVM 18.3 0.502 0.517 26.1

GA‑KNN 19.2 0.527 0.450 19.9

Language RF 18.1 0.466 0.548 29.9

XGB 17.8 0.458 0.569 32.3

GA‑SVM 19.7 0.508 0.493 21.4

GA‑KNN 19.9 0.511 0.418 17.1

Memory RF 18.5 0.534 0.494 24.3

XGB 18.3 0.530 0.499 24.9

GA‑SVM 19.6 0.568 0.407 14.9

GA‑KNN 20.2 0.584 0.354 10.2

Visuospatial func‑
tion

RF 18.1 0.521 0.565 31.7

XGB 17.9 0.515 0.574 33.0

GA‑SVM 20.1 0.578 0.498 22.3

GA‑KNN 20.0 0.577 0.430 18.1

Abbreviations: MAE, mean absolute error; RMAE, relative MAE (described in 
the “Experimental setup” section); EV, explained variance; RF, random forest; XGB, 
extreme gradient boosting; GA-SVM, genetic algorithm‑ support vector 
machine; GA-KNN, genetic algorithm‑K‑nearest

Appendix E. Features selected by the genetic 
algorithms
This appendix collects the features selected by the 
models that underwent a preliminary feature selection 
step using GAs (i.e., SVM and KNN). Table  11 shows 
the percentage of times in which each variable was 
selected in each fold for each problem. To simplify the 
information, only variables consistently chosen across 
different folds are included, encompassing those that 
appeared more than 75% of the time in each of the 
problems examined in the study. The total number of 
features selected in each of the folds by each of the 
algorithms in each problem is provided in a separate 
Excel document (see Selected-features-GA.xlsx).

Table 11 Percentage of times each feature was selected across 
cross‑validation folds for the different problems by the genetic 
algorithms

Feature P1 P2 P3 P4 P5 P6 P7 P8 P9

F0 100 100 100 100 100 100 100 100 100

F1 100 100 100 ‑ 100 100 100 100 100

F2 100 100 100 ‑ 100 100 95 100 90

F3 100 100 100 ‑ 100 95 90 ‑ 95

F4 ‑ ‑ ‑ ‑ 100 90 75 95 90

F5 ‑ 100 ‑ 100 ‑ ‑ 85 80 80

F6 75 100 80 85 ‑ ‑ ‑ ‑ 85

F7 75 ‑ ‑ ‑ ‑ 85 75 95 90

F8 ‑ ‑ 80 ‑ 85 75 ‑ 90 80

F9 ‑ ‑ ‑ ‑ 80 95 95 ‑ 85

F10 ‑ ‑ ‑ ‑ ‑ 85 95 90 80

F11 ‑ ‑ ‑ ‑ 75 85 80 ‑ 95

F12 ‑ ‑ ‑ ‑ 90 75 ‑ 75 95

F13 ‑ ‑ ‑ ‑ ‑ 75 80 90 85

F14 ‑ 75 ‑ ‑ ‑ 80 ‑ 85 80

F15 95 100 85 ‑ ‑ ‑ ‑ ‑

F16 95 75 100 ‑ ‑ ‑ ‑ ‑ ‑

F17 ‑ ‑ ‑ ‑ 80 ‑ ‑ 75 90

F18 ‑ ‑ ‑ 90 ‑ ‑ 80 75 ‑

F19 ‑ 85 ‑ ‑ ‑ ‑ 80 ‑ 75

F20 75 ‑ ‑ ‑ ‑ 75 85 ‑ ‑

F21 ‑ ‑ ‑ ‑ 75 ‑ 80 ‑ 75

F22 75 ‑ ‑ ‑ ‑ 80 75 ‑ ‑

F23 ‑ 80 ‑ 100 ‑ ‑ ‑ ‑ ‑

F24 ‑ ‑ ‑ ‑ 90 ‑ 85 ‑ ‑

F25 ‑ ‑ ‑ 80 ‑ ‑ 90 ‑ ‑

F26 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 80 90

F27 ‑ ‑ ‑ 80 ‑ ‑ 90 ‑ ‑

F28 ‑ ‑ ‑ 90 ‑ ‑ 80 ‑ ‑

F29 ‑ ‑ ‑ ‑ ‑ 75 90 ‑ ‑

F30 ‑ ‑ ‑ ‑ 90 ‑ 75 ‑ ‑

F31 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75 90

F32 75 85 ‑ ‑ ‑ ‑ ‑ ‑ ‑
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Feature P1 P2 P3 P4 P5 P6 P7 P8 P9

F33 ‑ ‑ 80 80 ‑ ‑ ‑ ‑ ‑

F34 ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑ 75

F35 80 ‑ 75 ‑ ‑ ‑ ‑ ‑ ‑

F36 75 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑

F37 ‑ 75 ‑ ‑ ‑ ‑ 75 ‑ ‑

F38 75 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑

F39 ‑ 75 75 ‑ ‑ ‑ ‑ ‑ ‑

F40 ‑ ‑ ‑ ‑ 100 ‑ ‑ ‑ ‑

F41 ‑ 95 ‑ ‑ ‑ ‑ ‑ ‑ ‑

F42 ‑ ‑ ‑ ‑ 90 ‑ ‑ ‑ ‑

F43 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 90

F44 ‑ ‑ ‑ ‑ ‑ ‑ 90 ‑ ‑

F45 ‑ ‑ ‑ ‑ ‑ ‑ 85 ‑ ‑

F46 85 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

F47 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 85 ‑

F48 ‑ ‑ ‑ ‑ 85 ‑ ‑ ‑ ‑

F49 ‑ ‑ 85 ‑ ‑ ‑ ‑ ‑ ‑

F50 ‑ ‑ ‑ ‑ ‑ ‑ 80 ‑ ‑

F51 ‑ ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑

F52 ‑ ‑ ‑ ‑ ‑ ‑ 80 ‑

F53 ‑ ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑

F54 ‑ ‑ ‑ ‑ ‑ ‑ 80 ‑ ‑

F55 ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑ ‑

F56 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 80

F57 ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑

F58 ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑

F59 ‑ ‑ 80 ‑ ‑ ‑ ‑ ‑ ‑

F60 ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑ ‑

F61 ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑ ‑

F62 ‑ ‑ ‑ ‑ 80 ‑ ‑ ‑ ‑

F63 ‑ ‑ 80 ‑ ‑ ‑ ‑ ‑ ‑

F64 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 80

F65 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75

F66 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑

F67 ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑ ‑

F68 ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑ ‑

F69 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑

F70 ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑ ‑

F71 ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75 ‑

F72 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑ ‑

F73 ‑ ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑

F74 ‑ ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑

F75 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑ ‑

F76 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑ ‑

F77 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑ ‑

F78 ‑ ‑ ‑ ‑ 75 ‑ ‑ ‑ ‑

F79 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

F80 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

F81 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑

F82 ‑ 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑

F83 ‑ ‑ 75 ‑ ‑ ‑ ‑ ‑ ‑

Feature P1 P2 P3 P4 P5 P6 P7 P8 P9

F84 ‑ ‑ 75 ‑ ‑ ‑ ‑ ‑ ‑

F85 ‑ 75 ‑ ‑ ‑ ‑ ‑ ‑ ‑

F86 ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ 75

a The names of the features are listed in Table 12

 Abbreviations: P1, SCD vs cognitive impairment; P2, SCD vs 
ADD; P3, SCD vs MCI; P4, MCI vs ADD; P5, attention; P6, executive 
function; P7, memory; P8, language; P9, visuospatial function

Table 12 Abbreviations of the feature names listed in Table 11

Codea Feature name Codea Feature name

F0 Age F44 (AE) Frequency 
F2‑bandwidth 
(voiced) AMean

F1 Years of formal 
education

F45 (ID) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 
20‑80th percentile 
range

F2 (AE) Spectral flux 
(voiced) CoV

F46 (AE) Frequency 
F3‑bandwidth 
(voiced) CoV

F3 (ID) Energy/Ampli‑
tude Loudness CoV

F47 (ID) Frequency 
F2‑amplitudelogrelf0 
(voiced) AMean

F4 (ID) Temporal‑
feature Loudness‑
Peak/second

F48 (ID) Frequency 
F1‑frequency 
(voiced) CoV

F5 (AE) Ceptral MFCC4 
(voiced) CoV

F49 (ID) Ceptral MFCC4 
CoV

F6 (AE) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 
Mean rising slope

F50 (AE) Spectral Alpha‑
ratio (voiced) CoV

F7 (ID) Energy/Ampli‑
tude Shimmer‑
localdb (voiced) 
CoV

F51 (ID) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) Std 
falling slope

F8 (AE) Frequency 
F0‑semito nefrom‑
27.5hz (voiced) CoV

F52 (AE) Frequency 
F3‑frequency 
(voiced) CoV

F9 (AE) Spectral flux 
(unvoiced) Amean

F53 (AE) Ceptral MFCC3 
(voiced) CoV

F10 (AE) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 
20‑80th percentile 
range

F54 (AE) Spectral Ham‑
marberg index 
(unvoiced) AMean

F11 (ID) Energy/Ampli‑
tude Loudness 
20th percentile

F55 (AE) Ceptral MFCC2 
CoV

F12 Energy/Amplitude 
Loudness 50th 
percentile

F56 Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 20th 
percentile

F13 Spectral flux 
(unvoiced) Amean

F57 Spectral Ham‑
marberg index 
(unvoiced) AMean
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Codea Feature name Codea Feature name

F14 Spectral Alpharatio 
(unvoiced) AMean

F58 (AE) Energy/Ampli‑
tude Loudness Mean 
falling slope

F15 (AE) Spectral 
Slope500‑1500 
(unvoiced) Amean

F59 (AE) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) Std 
rising slope

F16 (AE) Frequency 
F3‑bandwidth 
(voiced) AMean

F60 (AE) Spectral Slope0‑
500 (unvoiced) 
Amean

F17 Temporal‑feature 
Unvoiced‑
Segment‑Length/
second Mean

F61 (AE) Ceptral MFCC4 
AMean

F18 (AE) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 
Mean falling slope

F62 (AE) Ceptral MFCC1 
(voiced) AMean

F19 (AE) Frequency 
F2‑bandwidth 
(voiced) CoV

F63 (AE) Frequency 
F2‑frequency 
(voiced) CoV

F20 (AE) Frequency 
F2‑frequency 
(voiced) AMean

F64 Frequency F2‑band‑
width (voiced) 
AMean

F21 Frequency F0‑semi‑
tonefrom‑27.5hz 
(voiced) CoV

F65 Frequency F3‑ampli‑
tudelogrelf0 (voiced) 
AMean

F22 (AE) Spectral 
Slope500‑1500 
(voiced) AMean

F66 Frequency F0‑sem‑
itonefrom‑27.5hz 
(voiced) Mean rising 
slope

F23 (AE) Temporal‑
feature Voiced‑
Segment‑Length/
second Mean

F67 Spectral flux (voiced) 
CoV

F24 Spectral Slope500‑
1500 (voiced) CoV

F68 (AE) Energy/Ampli‑
tude Loudness 
20‑80th percentile 
range

F25 (AE) Spectral 
Alpharatio 
(unvoiced) AMean

F69 (ID) Spectral flux 
AMean

F26 (AE) Ceptral MFCC1 
CoV

F70 (AE) Ceptral MFCC4 
(voiced) AMean

F27 (AE) Spectral Har‑
monic difference 
H1‑H2 (voiced) CoV

F71 (AE) Energy/Ampli‑
tude Loudness Std 
rising slope

F28 (AE) Frequency 
F0‑semitonefrom‑
27.5hz (voiced) Std 
falling slope

F72 Spectral Slope500‑
1500 (unvoiced) 
Amean

F29 (AE) Energy/Ampli‑
tude Loudness 
50th percentile

F73 (AE) Spectral flux 
AMean

F30 (AE) Energy/Ampli‑
tude Loudness 
Mean rising slope

F74 Energy/Amplitude 
Shimmer‑localdb 
(voiced) AMean

F31 Frequency 
F3‑frequency 
(voiced) CoV

F75 (AE) Others 
Equivalent‑Sound‑
Level (dB)

Codea Feature name Codea Feature name

F32 Ceptral MFCC1 
(voiced) CoV

F76 Temporal‑feature 
Voiced‑Segments/
second

F33 (AE) Frequency 
Jitter‑local (voiced) 
CoV

F77 (AE) Energy/Ampli‑
tude Loudness 
AMean

F34 Spectral Slope500‑
1500 (voiced) 
AMean

F78 Frequency F2‑fre‑
quency (voiced) 
AMean

F35 (AE) Spectral 
Slope0‑500 
(voiced) CoV

F79 Frequency F3‑band‑
width (voiced) 
AMean

F36 (AE) Temporal‑
feature Loudness‑
Peak/second

F80 (ID) Ceptral MFCC3 
AMean

F37 Ceptral MFCC1 
(voiced) AMean

F81 (AE) Ceptral MFCC1 
(voiced) CoV

F38 Ceptral MFCC3 
(voiced) AMean

F82 Frequency 
F0‑semitonefrom‑
27.5hz (voiced) 50th 
percentile

F39 Ceptral MFCC4 
(voiced) CoV

F83 (AE) Frequency 
F1‑frequency 
(voiced) AMean

F40 Ceptral MFCC4 
(voiced) AMean

F84 (AE) Spectral 
Harmonic differ‑
ence H1‑H2 (voiced) 
AMean

F41 (AE) Energy/Ampli‑
tude Shimmer‑
localdb (voiced) 
CoV

F85 (ID) Ceptral MFCC2 
CoV

F42 (AE) Energy/Ampli‑
tude Loudness Std 
falling slope

F86 Frequency F0‑sem‑
itonefrom‑27.5hz 
(voiced) Std rising 
slope

F43 Frequency 
F2‑frequency 
(voiced) CoV

a Feature code used to identify the variable in Table 11

 Abbreviations: ID, image description task; AE, animal enumeration 
task; MFCC, mel‑frequency cepstral coefficient; AMean, arithmetic 
mean; CoV, coefficient of variation; HNR, harmonics‑to‑noise ratio; Std, standard 
deviation
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