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Abstract 

Background The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagno‑
sis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impair‑
ment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI‑FTD in a cohort 
of genetically confirmed FTD cases against healthy controls.

Methods A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant 
with mild clinical symptoms, while 281 were non‑carrier family members (healthy controls (HC)). A subgroup 
of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment.

Results The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition 
of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 
0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001).

Conclusions The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal 
stage of FTD.
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Introduction
Frontotemporal dementia (FTD) encompasses a clini-
cally, genetically, and pathologically heterogeneous group 
of neurodegenerative disorders characterized by predom-
inant degeneration of the frontal and/or temporal lobes. 
The clinical criteria have been defined based on present-
ing clinical symptoms, i.e., the behavioral variant of FTD 
(bvFTD) [1], which is associated with early behavioral 
and executive deficits; the agrammatic variant of primary 
progressive aphasia (avPPA), with progressive deficits 
in speech, grammar, and word output; and the semantic 
variant of PPA (svPPA), which is a progressive disorder of 
semantic knowledge and naming [2]. During the course 
of the disease, these phenotypes may change or overlap 
[3] and are often associated with motor features, includ-
ing extrapyramidal symptoms, as in progressive supra-
nuclear palsy (PSP) and corticobasal syndrome (CBS), or 
motor neuron disease (FTD-MND) [4, 5].

The initial phases of FTD, preceding overt dementia, 
are characterized by a potentially extended period dur-
ing which biological (preclinical) and subsequently clini-
cal (prodromal) alterations progressively accumulate, yet 
these stages remain inadequately delineated [6].

Recent advances in therapeutic strategies, particularly 
for monogenic disease, and the need for accurate coun-
seling and guidance make the proper definition of these 
stages more compelling. In particular, several approaches 
have now been operationalized to define the prodromal 
stages of FTD, and it has been reported that biological 
markers, such as neurofilament light (NfL) or brain mag-
netic resonance imaging (MRI), are already altered in 
these early stages [7, 8].

The Genetic Frontotemporal Initiative (GENFI) Stag-
ing Group has recently proposed clinical criteria for the 
diagnosis of prodromal FTD, termed “mild cognitive 
and/or behavioral and/or motor impairment” (MCBMI) 
[6] to capture the entire disease complexity at presenta-
tion. The proposed MCBMI criteria include gradual and 
progressive cognitive and/or behavioral and/or motor 
changes compared to prior functioning and reported by 
the patient or informant, with preservation of independ-
ence in functional abilities of daily living, occurring along 
with one or more of the following symptoms: (a) objec-
tive evidence of a dysexecutive syndrome, occurring in 
isolation or associated with other cognitive changes, such 
as impaired social cognition; (b) language deficits; (c) 
behavioral changes including apathy, disinhibition, loss 
of empathy, compulsive behavior, and change in appetite; 
and (d) signs and symptoms of parkinsonism or motor 
neuron disease [6]. The validity of this set of symptoms in 
defining MCBMI-FTD needs to be further explored.

A genetically inherited disorder, most frequently due 
to variants in the microtubule-associated protein tau 

(MAPT), progranulin (GRN), or chromosome 9 open 
reading frame72 (C9orf72) genes [9, 10], may repre-
sent a privileged scenario to assess the MCBMI criteria 
accuracy.

These observations prompted the present study, aimed 
at validating the proposed set of criteria for MCBMI 
in the GENFI cohort, considering subjects carrying 
pathogenic FTD variants with mild clinical symptoms 
compared to a healthy control group composed of non-
carrier family members. Moreover, we wanted to assess 
whether blood NfL levels or MRI data could improve 
diagnostic accuracy.

Materials and methods
Participants
From the GENFI cohort study, subjects carrying a patho-
genetic FTD variant and non-carrier family members 
were recruited from research centers across Europe and 
Canada (www. genfi. org. uk).

All participants underwent the GENFI standardized 
assessment [11]. During the first visit, demographic 
characteristics of all participants were collected, as well 
as information regarding clinical background. As previ-
ously published, the years to expected onset were cal-
culated as the difference between age at assessment and 
mean age at onset within the family [11, 12]. Despite the 
variability in correlation strength across genetic groups, 
with the strongest observed for MAPT and the weakest 
for GRN, this approach remains one of the most depend-
able methods currently available for estimating age at 
disease onset in mutation carriers [11–13]. A subgroup 
of patients nearing their estimated disease onset was 
identified as those with an estimated years to onset of < 5 
years. While recognizing that the variability in estimating 
disease onset may condition this time frame, within our 
cohort, particularly among patients who transitioned to a 
fully symptomatic status at follow-up, this cutoff demon-
strated that the majority of those who converted (77.8%) 
had an estimated disease onset of < 5 years. It is notewor-
thy that predicting precise conversion timelines in FTD 
is inherently challenging, as previously highlighted [14].

For the purpose of the present study, we included a 
consecutive sample of participants, carriers of an FTD 
pathogenic variant (MAPT, GRN, or C9orf72) with mild 
clinical symptoms and non-carriers as healthy controls 
(HC). In keeping with current literature and the aim of 
the present study, mild clinical symptoms were defined 
as a global  CDR® Dementia Staging Instrument plus 
National Alzheimer’s Coordinating Centre (NACC) 
behavior and language domains [15, 16] (CDR plus 
NACC FTLD) of 0.5 or a CDR plus NACC FTLD of 0 
along with mild but significant motor symptoms. Unlike 
the global CDR score for which the memory domain is 

http://www.genfi.org.uk
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regarded as the primary domain and the others second-
ary, all eight domains of the CDR plus NACC FTLD 
are equally weighted in calculating the global CDR plus 
NACC FTLD score, and if any domain has a rating of 
0.5 or if the maximum domain score is 1 and all other 
domains are 0, the global CDR plus NACC FTLD score 
is equal to 0.5 [17]. We did not include patients with a 
full FTD phenotype, thus with a global CDR plus NACC 
FLTD score of ≥ 1, according to the following scoring, 
as previously published by Miyagawa et al.: “If the maxi-
mum domain score is 2 or 3 and all other domains are 
0, the global score is 1; if the maximum domain score 
occurs only once, and there is another rating besides 0, 
the global score is one level lower than the level corre-
sponding to maximum impairment; if the maximum 
domain score occurs more than once, then the global 
score is that maximum domain score” [17].

Local ethics committees approved the study at each 
site, and all participants provided written informed con-
sent. The study was conducted according to the Declara-
tion of Helsinki.

Assessment of MCBMI
MCBMI was assessed by the following: (a) trial making 
test [18], semantic (animals) and phonemic fluencies (let-
ters FAS) [19] scores to assess executive functions; (b) the 
mini-social cognition and emotional assessment (mini-
SEA), which is composed from a reduced and modified 
version of the Faux-Pas test, and a facial emotions rec-
ognition test [20] scores to assess social cognition; (c) 
Boston Naming [21] and modified Camel and Cactus test 
(mCCT) [22] scores to test language; (d) presence of apa-
thy, disinhibition, loss of empathy, compulsive behavior, 
and change in appetite, as reported by caregiver (which 
were rated on a 5-point scale: 0 = absent, 0.5 = question-
able/very mild, 1 = mild, 2 = moderate, and 3 = severe) to 
assess behavioral disturbances; and (e) presence of signs 
of parkinsonism or motor neuron disease as referred by 
caregiver, including dysarthria, dysphagia, tremor, slow-
ness, weakness, gait disorder, falls, and functional diffi-
culties using hands (which were rated on a 5-point scale: 
0 = absent, 0.5 = questionable/very mild, 1 = mild, 2 = 
moderate, and 3 = severe) to assess extrapyramidal and 
motor neuron signs and symptoms. For further details 
and practical examples for each symptom and level of 
severity, we refer readers to Table S1 of Samra et al. [23].

Neurofilament light quantification
In a subset of participants (n = 173), plasma was col-
lected by venipuncture and centrifuged (2000g, 10 min, 
at room temperature). The serum was frozen at − 80 °C 
within 3 h after collection, shipped, and analyzed without 
any previous thaw–freeze cycle. We measured NfL levels 

in duplicates by single molecule array (Simoa) technique 
on the Simoa HD-X Analyzer (Quanterix, Lexington, 
MA, USA), using the NF-light Advantage kit for NfL 
[24] according to the manufacturer’s instructions (dilu-
tion: 1/4). All measurements had a coefficient of variation 
(CV) below 20%. Technicians were blinded to the geno-
typic and clinical status of the samples.

MRI visual rating
A subset of participants (n = 297) underwent MRI at 
their local site. The protocol, designed to match across 
scanners as much as possible, included a volumetric 
T1-weighted scan, as previously published [11]. Visual 
rating of cerebral atrophy of the complete imaging data-
set of all participants was performed, blind to all clinical 
and genetic information, by two trained raters (A.B. and 
E.P.). We adopted the 4-point scale evaluating both left 
and right anterior cingulate atrophy, evaluated on the 
first anterior slice where the corpus callosum becomes 
visible, which has been shown to be specific for FTD [25]. 
The selection of the anterior cingulate atrophy visual 
rating scale was grounded in its demonstrated efficacy 
and validation in discriminating FTD from Alzheimer’s 
disease, as well as its applicability across pathologi-
cally confirmed FTLD subtypes [26]. While data-driven 
approaches like voxel-based morphometry (VBM) can 
provide comprehensive insights into patterns of atrophy, 
the practical applicability of such methods in routine 
clinical practice can be limited due to the requirement 
of specialized software and expertise. Moreover, Harper 
et al. [25] demonstrated significant correlations between 
the visual rating scales and objective measurements of 
atrophy in the corresponding brain regions, including 
smaller frontal regions like the anterior cingulate, ensur-
ing the reliability and validity of these scales in assessing 
regional brain atrophy. In contrast, visual rating scales, 
particularly those that are validated and recognized for 
their utility in distinguishing between neurodegenerative 
disorders, provide an accessible and applicable tool for 
clinicians, ensuring that the criteria can be readily imple-
mented in patient assessments and diagnoses.

Images were rated in native space, in keeping with 
standard clinical reads. To aid rating consistency, refer-
ence images for the rating scale were provided to raters 
[25]. The mean values obtained by both raters were con-
sidered for analyses. Inter-rater reliability was deter-
mined using the intraclass correlation coefficient (ICC) 
(two-way random, absolute ICC), which was equal to 
0.78, comparable to previous studies [25].

Statistical analysis
Baseline demographic and clinical variables were com-
pared across the groups using the Mann-Whitney U 
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test for continuous variables or Fisher’s exact test for 
categorical variables. Considering that neuropsycho-
logical tests have substantial variability in performance 
below the normal range, tests were coded as “normal” or 
“abnormal” based on age-, sex-, and education-adjusted 
z-scores, with an impairment defined as z ≤ − 1.5, 
obtained from the healthy control group. Binomial logis-
tic regressions were used to evaluate the predictive mod-
els and receiver-operating characteristic (ROC) curves 
constructed from the logistic scores. Areas under the 
curves (AUCs), including 95% confidence interval (CI) 
values, are reported. Sensitivities and specificities were 
computed at Youden’s J index thresholds. Positive predic-
tive values (PPV) and negative predictive values (NPV) 
were computed; PPV was defined as the number of true 
positives/(number of true positives + number of false 
positives) while NPV was defined as the number or true 
negatives/(number of true negatives + number of false 
negatives). Given the multivariable nature of the model, 
specific cutoff values for individual measures are not 
obtainable, as changes in one predictor are considered in 
the context of all other variables in the model.

Statistical significance was assumed at p < 0.05, and p 
values were two-sided. Data analyses were carried out 
using SPSS, version 25.0 (IBM Corp).

Data availability
All study data, including raw and analyzed data, and 
materials will be available upon reasonable request.

Results
Participant characteristics
A total of 398 participants were enrolled, 117 of whom 
were carriers of an FTD pathogenic variant (51 C9orf72, 
44 GRN, 22 MAPT) in the MCBMI phase, while 281 
were familial non-carriers. Demographic characteris-
tics for both carriers and non-carriers are reported in 
Table  1. The groups appeared similarly distributed in 
sex, education, and handedness. The prodromal FTD 
group appeared slightly older (p = 0.016), but this differ-
ence of ~ 5 years (50 vs 45) was not considered clinically 
meaningful. Carriers showed significantly higher levels of 
plasma NfL (p < 0.001). Anterior cingulate cortex atrophy 
was significantly different between carriers and non-car-
riers (p < 0.001).

Behavioral features
Behavioral symptoms for each group are reported in 
Table 2. The most frequently rated symptoms in the pro-
dromal FTD group were apathy (21.4%), followed by dis-
inhibition (17.9%), loss of empathy (14.5%), compulsive 

Table 1 Demographic and clinical characteristics of the prodromal FTD group and healthy control group

Data are median (interquartile range (IQR)) or n (%). p values were calculated by the Mann-Whitney U test, χ2 test, or Fisher’s exact test, as appropriate

R right-handed, L left-handed, A ambidextrous, CDR plus NACC – SOB CDR® Dementia Staging Instrument plus National Alzheimer’s Coordinating Centre behavior and 
language domains sum of boxes, NfL neurofilament light
a See text for details
b For healthy non-carriers, the number of participants in each genetic group represents healthy participants with a family member with that particular genetic variant

Prodromal carriers (n = 117) Healthy non-carriers (n = 281) p value

Age, years 50.1 (39.4–56.9) 44.7 (37.8–56.6) 0.016

Sex, n female (%) 70 (59.8) 158 (56.2) 0.578

Education, years 15 (12–16) 15 (12–16) 0.858

Handedness (R:L:A) 105:10:2 258:19:4 0.702

CDR plus NACC - SOB 0.5 (0.5–1.5) 0.0 (0.0–0.0)

Genetic status, n (%)b 0.189

 GRN 44 (37.6) 99 (35.2)

 C9orf72 51 (43.6) 116 (41.3)

 MAPT 22 (18.8) 59 (21.0)

Neuropsychological tests
 TMT-A 25.0 (19.0–33.0) 24.9 (19.0–31.0) 0.468

 TMT-B 61.0 (45.0–80.0) 57.1 (47.0–72.8) 0.437

 Semantic fluencies 23.0 (20.0–28.0) 24.0 (20.0–27.0) 0.784

 Phonemic fluencies 40.0 (30.0–49.8) 41.0 (31.0–50.0) 0.581

 Mini-SEA 25.6 (24.0–27.0) 26.0 (24.0–27.0) 0.444

 Boston naming 28.0 (26.0–29.0) 28.0 (27.0–29.0) 0.097

 Modified camel and cactus test 30.4 (29.0–31.0) 30.4 (29.2–31.0) 0.953

 Plasma NfL, pg/mL 9.7 (6.7–15.9) 7.4 (5.0–10.6) < 0.001

 Anterior cingulate cortexa 0.75 (0.25–1.25) 0.50 (0.00–0.50) < 0.001
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behavior (13.7%), and change in appetite (10.3%). All 
behavioral features were significantly different between 
the groups (all p < 0.001).

We observed that nearly half (43.6%) of prodromal 
FTD presented with at least one behavioral symptom 
while only 6.8% of the control group did (p < 0.001).

Neuropsychological assessment
The frequency of impairment at formal neuropsycho-
logical testing is reported in Table  2. We observed sig-
nificantly more impaired scores in the prodromal FTD 
group compared to the healthy control group in nearly 
all neuropsychological tests. In particular, the Bos-
ton Naming Test was impaired in 66.4% of prodromal 
FTD patients, followed by the Trail Making Test Part A 
(44.8%). Semantic and phonemic fluencies were simi-
larly altered in 18.1% of prodromal FTD patients. We 
observed that at least one cognitive test was impaired in 
up to 72.6% of prodromal FTD, compared to just 16.8% of 
healthy controls.

Motor features
Motor symptoms for each group are reported in Table 2. 
The most frequently rated symptoms in the prodromal 
FTD group were weakness (13.7%), followed by gait dis-
order (7.7%), functional difficulties using hands (7.7%), 
dysphagia (6.0%), tremor (6.0%), slowness (6.0%), falls 
(6.0%), and dysarthria (5.0%). Of all motor symptoms, 
only tremor was not significantly different between the 
groups. We observed that one quarter (25.6%) of pro-
dromal FTD presented with at least one motor symptom 
while only 5.3% of the control group did (p < 0.001).

Classification accuracy of proposed criteria
We tested the diagnostic accuracy of the proposed crite-
ria in discriminating prodromal FTD from healthy con-
trols and subsequently adding information on plasma 
NfL and/or anterior cingulate cortex atrophy evaluated 
by visual rating scale.

Considering the whole group, as shown in Fig. 1A and 
Table  3, the MCBMI criteria showed an AUC of 0.79 
(95% CI 0.73–0.84), with a sensitivity of 56.5% and speci-
ficity of 93.4%. Diagnostic accuracy of behavioral, cog-
nitive, and motor symptoms core features is reported 
separately in Additional file 1: Table S1.

Taken singularly, plasma NfL and anterior cingulate 
cortex atrophy showed similar accuracies (AUC of 0.68 
[95% CI 0.59–0.77] with a cutoff of 8.53 pg/mL and 0.69 
[95% CI 0.62–0.77], respectively). The addition of plasma 
NfL or anterior cingulate cortex atrophy to core clinical 
criteria similarly increased diagnostic accuracy (AUC 
of 0.84 [95% CI 0.76–0.91] and 0.82 [95% CI 0.76–0.89], 
respectively). The inclusion of both plasma NfL and 
anterior cingulate cortex atrophy to core clinical criteria 
showed the highest diagnostic accuracy, with an AUC of 
0.90 (0.82–0.97), with a sensitivity of 81.8% and a speci-
ficity of 93.0% (see Fig. 1A and Table 3).

If we considered only participants approaching esti-
mated disease onset (with estimated years to onset < 5 
years, n = 139), the proposed MCBMI criteria showed 
higher accuracies, as reported in Fig.  1B and Table  3. 
The MCBMI criteria showed an AUC of 0.85 (95% CI 
0.78–0.93), with a sensitivity of 80.0% and a specificity of 
87.4%. Diagnostic accuracy of behavioral, cognitive, and 
motor symptoms core features in this group are reported 
separately in Additional file 1: Table S1.

The addition of plasma NfL or anterior cingulate cortex 
atrophy to the MCBMI criteria similarly increased diag-
nostic accuracy (AUC of 0.92 [95% CI 0.83–1.00] and of 
0.92 [95% CI 0.86–0.98], respectively). The inclusion of 
both plasma NfL and anterior cingulate cortex atrophy to 
the MCBMI criteria showed the highest diagnostic accu-
racy, with an AUC of 0.97 (0.93–1.00), with a sensitivity 
of 91.7% and a specificity of 96.4%.

Table 2 Behavioral and motor features of the prodromal FTD 
group and healthy control group

Data are n (%). p values were calculated by the χ2 test or Fisher’s exact test

Prodromal 
carriers (n = 117)

Healthy non-
carriers (n = 281)

p value

Behavior

 Disinhibition 21 (17.9%) 4 (1.4%) < 0.001

 Apathy 25 (21.4%) 11 (3.9%) < 0.001

 Loss of empathy 17 (14.5%) 2 (0.7%) < 0.001

 Compulsive behavior 16 (13.7%) 3 (1.1%) < 0.001

 Change in appetite 12 (10.3%) 4 (1.4%) < 0.001

 ≥ 1 behavioral symptom 51 (43.6%) 19 (6.8%) < 0.001

Cognitive

 Camel and Cactus 20 (17.4%) 20 (7.2%) 0.005

 TMT A 52 (44.8%) 18 (6.5%) < 0.001

 TMT B 18 (15.5%) 24 (8.6%) 0.049

 Boston Naming 77 (66.4%) 21 (7.5%) < 0.001

 Semantic fluencies 21 (18.1%) 15 (5.4%) < 0.001

 Phonemic fluencies 21 (18.1%) 20 (7.2%) < 0.001

 Mini‑SEA 15 (13.0%) 16 (5.8%) 0.022

 ≥ 1 cognitive impairment 85 (72.6%) 47 (16.8%) < 0.001

Motor

 Dysarthria 6 (5.1%) 3 (1.1%) 0.022

 Dysphagia 7 (6.0%) 2 (0.7%) 0.003

 Tremor 7 (6.0%) 11 (3.9%) 0.428

 Slowness 7 (6.0%) 3 (1.1%) 0.009

 Weakness 16 (13.7%) 1 (0.4%) < 0.001

 Gait disorder 9 (7.7%) 5 (1.8%) 0.006

 Falls 7 (6.0%) 1 (0.4%) 0.001

 Difficulties using hands 9 (7.7 %) 0 (0.0%) < 0.001

 ≥ 1 motor symptom 30 (25.6%) 15 (5.3%) < 0.001
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If we considered single genes separately, we observed 
comparable results (see Additional file  1: Table  S2). In 
the C9orf72 group, the MCBMI criteria added to plasma 
NfL and anterior cingulate cortex atrophy showed an 
AUC of 0.91 (0.82–0.99), with a sensitivity of 75.0% and 
a specificity of 95.5%. For GRN, we observed an AUC of 
0.98 (0.94–1.00), with a sensitivity of 100.0% and a speci-
ficity of 85.0%, while for MAPT, we observed an AUC 

of 1.00 (1.00–1.00), with sensitivity and specificity of 
100.0%.

Single ROC curves and cutoff values for each meas-
ure that was employed are reported in Additional file 1: 
Table S3.

Discussion
In this study, we tested the proposed set of diagnostic cri-
teria for mild cognitive and/or behavioral and/or motor 
impairment (MCBMI), which represents the prodromal 
stage of FTD. These criteria have shown good diagnostic 
accuracy in classifying MCBMI versus a group of non-
carrier family members, with better specificity and nega-
tive predictive values than sensitivity.

The decision to include cognitive, behavioral, and 
motor symptoms in the definition of prodromal FTD 
stemmed from the evidence that all these symptoms, 
alone or in combination, may be observed in the prodro-
mal stages [4, 11, 27–31]. Moreover, during the course of 
the disease, cognitive, behavioral, and motor symptoms 
may change or overlap [3], making the classification of 
a particular clinical syndrome particularly problematic 
in its infancy. Indeed, when we considered these items 
separately, we found that both behavior abnormalities, 
cognitive deficits, and even motor symptoms contrib-
uted to the definition of MCBMI. It is however true that 
additional cognitive tests and clinical features may allow 
to better refine classification accuracy and sensitivity of 
MCBMI-FTD. In the same view, considering neuropsy-
chiatric symptoms in the framework of MCBMI [32] may 
possibly further improve its operational definition and 
neuropathological correlations.

As already reported in other prodromal neurodegen-
erative dementias [33, 34], we also aimed at assessing the 
add-on value of potential biological or imaging diagnos-
tic markers. To this, we considered blood NfL measure-
ments, already shown to be increased in both sporadic 
and genetic FTD, particularly during the conversion from 
the presymptomatic to symptomatic phase, even if not 
specific for the disease [7, 35, 36], and anterior cingu-
late cortex atrophy, which is scored easily by visual rat-
ing scales at single subject level and has been shown to be 
specific for FTD [25, 37, 38].

Interestingly, we observed that plasma NfL and ante-
rior cingulate scores, taken singularly, have only modest 
accuracy in identifying prodromal FTD; however, when 
added to the MCBMI clinical criteria, both markers sig-
nificantly increased diagnostic accuracy, and the high-
est classification was achieved when both markers were 
incorporated.

We also assessed the diagnostic accuracy in patients 
who were predicted to be approaching disease onset 
(with an estimated symptom onset < 5 years). In this 

Fig. 1 ROC curve analysis for differentiating prodromal FTD 
from healthy controls in A the whole group and in B participants 
with an estimated years to onset > − 5 years. ROC, receiver operating 
characteristics; AUC, area under the curve; NfL, neurofilament light; 
Cingulate, average left and right anterior cingulate cortex atrophy 
evaluated by visual rating scales
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case, nearly all classification models showed higher lev-
els of diagnostic accuracy, possibly identifying partici-
pants approaching disease conversion.

In interpreting the ROC curves and the diagnostic 
accuracy when adding biomarkers, it is crucial to pro-
ceed with caution due to the potential for overfitting, 
especially given the specificity and rarity of our sample.

We observed similar results between different genetic 
groups (C9orf72, GRN, MAPT), thus possibly sug-
gesting that these criteria could be accurate also in 
the sporadic presentations of disease. While there are 
documented similarities between familial and sporadic 
FTD [39–41], it is pivotal to acknowledge the exist-
ing literature that points to crucial differences in the 
underlying biology and pathology between these forms. 
Notable distinctions such as dipeptide repeats (DPR) 
pathology [42, 43] and increased tau co-pathology in 
C9orf72 [44], lipofuscin presence in the retina of GRN 
carriers [45], and the heterogeneity of tau inclusion 
morphologies in MAPT versus sporadic tauopathies 
[46], as well as variations in biomarkers, including 
white matter hyperintensities in GRN FTD [47, 48] and 
altered CSF biomarker values in familial versus spo-
radic FTD [49], underscore the complexity and hetero-
geneity inherent in FTD. These differences necessitate 
a cautious approach in defining and understanding the 
prodromal state in both familial and sporadic FTD.

The MCBMI criteria, while conceptual, encompass a 
broad spectrum of symptoms and changes, including the 
vital consideration of gradual and progressive cognitive, 
behavioral, and motor changes compared to prior func-
tioning, providing a subtle and dynamic characteriza-
tion of early FTD. In contrast, the operationalization of 
these criteria, utilizing a CDR plus NACC FTLD score of 
0.5, offers a standardized, quantifiable method for imple-
menting the MCBMI criteria in practical settings. How-
ever, it is pivotal to note that the global CDR plus NACC 
FTLD, while instrumental in defining a stage of the disor-
der, does not inherently provide the tools to discriminate 
between early-stage FTD patients and healthy controls, 
underscoring the necessity of comprehensive, multidi-
mensional criteria like MCBMI to accurately identify and 
characterize prodromal FTD.

This study brings further insights into the earliest phases 
of genetic FTD, joining the effort of other slightly different 
endeavors. Recently, the ALLFTD Consortium has opera-
tionalized the criteria for the prodromal behavioral variant 
of FTD (bvFTD), opting to use the term “mild behavio-
ral and/or cognitive impairment in bvFTD (MBCI),” to 
acknowledge that both behavioral symptoms and cognitive 
impairment might be present during the disease prodrome 
[50], extending the previously published Rosovsky criteria 
to the earliest phases of the disease [1]. The bvFTD-MBCI 
and the MCBMI criteria address two key elements in the 

Table 3 Diagnostic accuracy of the proposed criteria in classifying prodromal FTD from healthy controls

MCBMI Mild cognitive and/or behavior and/or motor impairment, AUC  Area under the curve, PPV Positive predictive value, NPV Negative predictive value, NfL 
Neurofilament light, EYO Estimated years to onset
a n = 173
b n = 297
c n = 48
d n = 96

AUC (95% CI) Sensitivity Specificity PPV NPV

Whole group (n = 398)
 Core criteria 0.79 (0.73–0.84) 56.5% 92.8% 76.5% 83.8%

 Plasma  NfLa 0.68 (0.59–0.77) 63.0% 66.1% 40.3% 83.2%

 Anterior  cingulateb 0.69 (0.62–0.77) 55.1% 77.6% 42.7% 85.1%

 Core criteria +  NfLa 0.84 (0.76–0.91) 69.6% 86.4% 65.3% 88.5%

 Core criteria + anterior  cingulateb 0.82 (0.76–0.89) 64.7% 90.6% 67.7% 89.4%

 Core criteria + NfL + anterior  cingulatea 0.90 (0.82–0.97) 81.8% 93.0% 77.1% 94.7%

EYO < 5 years (n = 139)
 Core criteria 0.85 (0.78–0.93) 80.0% 87.4% 78.4% 88.4%

 Plasma  NfLc 0.65 (0.49–0.81) 60.0% 69.7% 47.4% 79.3%

 Anterior  cingulated 0.72 (0.61–0.83) 45.2% 89.2% 66.7% 77.3%

 Core criteria +  NfLc 0.92 (0.83–1.00) 80.0% 93.9% 85.7% 91.2%

 Core criteria + anterior  cingulated 0.92 (0.86–0.98) 83.3% 87.5% 75.8% 91.8%

 Core criteria + NfL + anterior  cingulatec 0.97 (0.93–1.00) 91.7% 96.4% 91.7% 96.4%
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FTD field; the first with the attempt to capture a specific 
disease phenotype, while the second tries to identify the 
earliest phases of the global FTD spectrum. Both are rea-
sonable and potentially useful depending on the clinical 
question, whether in relation to early-stage treatments, 
particularly for monogenic disease, that target the patho-
genetic mechanisms of the disease regardless of the clini-
cal phenotype. However, both approaches comply with 
a diagnostic tool rather than a screening test, reporting 
greater specificity than sensitivity.

We acknowledge that the present study entails several 
limitations. First, we did not include a control group with 
other neurodegenerative diseases, such as prodromal 
Alzheimer’s disease or non-neurodegenerative psychi-
atric disorders. This will be mandatory to confirm the 
validity of these criteria in real-world situations. Second, 
we did not perform a validation of the MCBMI criteria 
against a cohort that includes full phenotypes of FTD, as 
well as sporadic cases. While the criteria demonstrated 
validity in our specific cohort, further validation in 
cohorts encompassing a broader spectrum of FTD phe-
notypes and sporadic cases is crucial to ensure its appli-
cability and validity in various clinical contexts. Third, 
while the scales used have shown good validity, it will be 
important in future studies to formally assess both intra- 
and inter-rater variabilities. Fourth, we acknowledge the 
limitation of not including premanifest disease carriers 
and not evaluating the stability of the prodromal status 
and phenoconversion to symptomatic syndromes which 
should be further assessed in future longitudinal studies.

The MCBMI criteria have demonstrated potential 
validity in identifying prodromal FTD within the con-
fines of the present study, though further validation in 
diverse cohorts is essential to fully establish their validity 
and utility in clinical settings.
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