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Abstract 

Background Specific peripheral proteins have been implicated to play an important role in the development of Alz‑
heimer’s disease (AD). However, the roles of additional novel protein biomarkers in AD etiology remains elusive. The 
availability of large‑scale AD GWAS and plasma proteomic data provide the resources needed for the identification 
of causally relevant circulating proteins that may serve as risk factors for AD and potential therapeutic targets.

Methods We established and validated genetic prediction models for protein levels in plasma as instruments 
to investigate the associations between genetically predicted protein levels and AD risk. We studied 71,880 (proxy) 
cases and 383,378 (proxy) controls of European descent.

Results We identified 69 proteins with genetically predicted concentrations showing associations with AD risk. The 
drugs almitrine and ciclopirox targeting ATP1A1 were suggested to have a potential for being repositioned for AD 
treatment.

Conclusions Our study provides additional insights into the underlying mechanisms of AD and potential therapeutic 
strategies.
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Summary box
What is already know on this topic
There is one study evaluating associations between genet-
ically predicted protein levels in dorsolateral prefron-
tal cortex and risk of Alzheimer’s disease (AD); another 
study focuses on 38 dementia-associated proteins to 
determine associations of their genetically predicted 
levels in plasma with AD risk; a third study assesses 184 
cerebrospinal fluid proteins, 100 plasma proteins, and 
27 brain proteins using protein quantitative trait loci as 
instruments for their associations with AD risk. Exist-
ing studies did not systematically evaluate associations of 
predicted levels proteins across the proteome in plasma 
using genetic prediction models, findings of which may 
identify novel proteins to confer translational perspective 
for risk assessment and therapeutic strategies of AD.

What this study adds
Our study identifies 69 potential AD-associated proteins 
in plasma using comprehensive genetic prediction mod-
els as instruments. We also prioritize drugs almitrine and 
ciclopirox targeting ATP1A1 to have a potential for being 
repositioned for AD treatment.

How this study might affect research, practice, or policy
The promising proteins identified in our study could be 
further investigated for their roles in AD risk assessment 
and therapeutic strategies.

Introduction
Alzheimer’s disease (AD), the most common cause of 
dementia, has become a growing public health concern 
due to an unprecedented increase in life expectancy glob-
ally. In the USA, reported deaths from AD have increased 
146.2% between 2000 and 2018, making it the sixth lead-
ing cause of death [1]. It is predicted that the annual cost 
of caring for AD patients will reach to a trillion dollars 
by 2050. AD is an irreversible and progressive disorder 
with neuropathological changes often occurring long 
before any symptom becomes apparent. The abnormal 
accumulation of amyloid-beta (Aβ) plaques, a hallmark of 
AD, is known to occur as early as two decades before the 
onset of clinical symptoms [2]. Abnormal phosphoryla-
tion of tau, the second canonical AD protein aggregate, 
is believed to occur shortly thereafter (15–20 years before 
symptom onset) [3]. While a great deal of research effort 
has focused on targeting pathological Aβ aggregates and 
tau neurofibrillary tangles, several drugs were approved 
by U.S. Food and Drug Administration (FDA), including 
Aduhelm® [4] and Leqembi® [5]. These approved drugs 
could relieve symptoms while whether they can cure AD 

relies on further analyses. As a result, it is critical to iden-
tify novel biomarkers and biological pathways that may 
contribute to AD risk.

Physiological changes that take place outside the brain 
(e.g., immune, vascular, and metabolic changes) have been 
shown to directly influence the function of neural cells 
and relate strongly to risk of developing AD [6, 7]. The 
identification of circulating peripheral proteins that drive 
the associations between peripheral biological changes 
and increased risk for AD may enhance our understand-
ing of AD pathogenesis and thereby inform future thera-
peutic strategies. In addition to Aβ and tau, a number of 
proteins have also been recognized to be related to AD 
[8]. Translational and epidemiological research indicates 
that biological processes which operate outside of the cen-
tral nervous system can contribute considerably to one’s 
risk of developing AD [6, 9]. These peripheral biological 
processes can be reflected in plasma and serum protein 
composition, i.e., secreted proteins. Identifying proteins 
that are causally associated with AD-relevant outcomes 
will deepen our understanding regarding how peripheral 
molecular changes, biological pathways, and regulatory 
mechanisms influence AD risk.

AD is highly heritable. Twin and family studies sup-
port that genetic factors could play a role in at least 80% 
of AD cases [10]. A recent genome-wide association 
study (GWAS) has identified 29 independent disease-
associated risk loci by studying 71,880 (proxy) cases and 
383,378 (proxy) controls of European ancestry [11]. The 
present study aimed at identifying novel protein biomark-
ers for AD through evaluating the associations between 
genetically predicted protein concentrations and AD risk, 
a design of proteome-wide association study (PWAS). 
Similar to the design of Mendelian randomization (MR) 
and transcriptome-wide association study (TWAS) 
[12–15], such a design can potentially reduce common 
biases imbedded in conventional epidemiological studies, 
such as selection biases, residual confounding, or reverse 
causality. We established and validated comprehensive 
protein genetic prediction models to fully capture the 
genetically regulated components of protein levels by 
using both cis- and trans-acting elements, thus provid-
ing higher statistical power than only using cis-acting ele-
ments alone (a common practice for related studies). We 
then related genetically predicted plasma concentrations 
to AD risk and, in doing so, causally implicated 69 circu-
lating proteins in the AD pathogenesis, shedding light on 
the peripheral biology of AD.

Methods
The genome and plasma proteome data of European 
descendants included in the INTERVAL study (sub-
cohort 1 and subcohort 2) was used to establish and 
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validate protein genetic prediction models. Detailed 
information about the INTERVAL study dataset has been 
described elsewhere [16]. In brief, participants were aged 
18–80 and were generally in good health. The SOMAscan 
assay was used to measure the relative concentrations of 
3620 plasma proteins or protein complexes. Quality con-
trol (QC) was performed at the sample and SOMAmer 
level. After excluding eight non-human protein targets, 
a total of 3283 SOMAmers remained for further study. 
DNA was used to assay ~ 830,000 variants on the Affy-
metrix Axiom UK Biobank genotyping array. Standard 
sample and variant QC was conducted, as described in 
the original publication [16]. SNPs were further phased 
using SHAPEIT3 and imputed using a combined 1000 
Genomes Phase 3-UK10K reference panel via the Sanger 
Imputation Server, resulting in over 87 million imputed 
variants. Such SNPs were filtered using criteria of (1) 
imputation quality of at least 0.7, (2) minor allele fre-
quency (MAF) of at least 5%, (3) Hardy–Weinberg equi-
librium (HWE) p ≥ 5 ×  10−6, (4) missing rates < 5%, and 
(5) presenting in the 1000 Genome Project data for Euro-
pean populations. In total, there were 4,662,360 variants 
passing these criteria.

In subcohort 1 (N = 2481), protein levels were log 
transformed and adjusted for age, sex, duration between 
blood draw and processing, and the first three principal 
components of ancestry. For the rank-inverse normal-
ized residuals of each protein of interest, we followed 
the TWAS/FUSION framework [17] to develop genetic 
prediction models, using nearby SNPs (within 100  kb) 
of potentially associated SNPs as potential predictors. A 
false discovery rate (FDR) < 0.05 and P-value ≤ 5 ×  10−8 
were used to determine potentially associated SNPs in 
cis- and trans- regions, respectively. We defined cis-
region as a region within 1  Mb of the transcriptional 
start site (TSS) of the gene encoding the target protein 
of interest. Subsequently, we extracted all SNPs located 
within 100  kb of the aforementioned potentially associ-
ated SNPs to serve as potential predictors for establish-
ing protein prediction models, excluding any ambiguous 
SNPs. In order to include potential predictors from both 
cis and trans regions, we converted all the chromosome 
numbers to Z and combined them as a single pseudo 
chromosome. Four methods, namely, best linear unbi-
ased predictor, elastic net, LASSO, and top1, were used 
for establishing the models. For developed protein pre-
diction models with prediction performance (R2) of 
at least 0.01 [15, 18–23], which is a common threshold 
used in relevant studies, we further conducted external 
validation using subcohort 2 (N = 820) data. In brief, we 
generated predicted expression levels by applying the 
established protein prediction models to the genetic data, 
and then compared the predicted v.s. measured levels 

of each protein of interest. We selected proteins with a 
model prediction R2 of ≥ 0.01 in subcohort 1 and a cor-
relation coefficient of ≥ 0.1 in subcohort 2 for the down-
stream association analysis.

To assess the associations between genetically pre-
dicted circulating protein levels and AD risk, we applied 
the validated protein prediction models to the sum-
mary statistics from a large GWAS meta-analysis of AD 
risk [24]. Instead of using the conventional approach of 
including clinically diagnosed AD alone, this GWAS 
combined clinically confirmed and parental diagnoses 
based by-proxy phenotypes, which has been demon-
strated to confer great value in substantially increasing 
statistical power [25]. In brief, this study included a 
total of 85,934 cases (39,106 clinically diagnosed AD 
and 46,828 proxy AD) and 401,577 controls of European 
ancestry, which were obtained from various sources 
including The European Alzheimer & Dementia Biobank 
dataset (EADB), GR@ACE/DEGESCO study, The Rot-
terdam Study (RS1 and RS2), European Alzheimer’s 
Disease Initiative (EADI) Consortium, Genetic and Envi-
ronmental Risk in AD (GERAD) Consortium/Defining 
Genetic, Polygenic, and Environmental Risk for Alzhei-
mer’s Disease (PERADES) Consortium, The Norwegian 
DemGene Network, The Neocodex–Murcia study (NxC), 
The Copenhagen City Heart Study (CCHS), Bonn stud-
ies, and UK Biobank. Detailed information on study par-
ticipants as well as genotyping and imputation methods 
for the samples from each of the included study can be 
found in the supplementary files of the original GWAS 
paper [24]. Risk estimates for the single marker associa-
tion analyses were adjusted for sex, batch (if applicable), 
age (if applicable), and top principal components (PCs).

The TWAS/FUSION framework was used to determine 
the protein-AD associations, by leveraging correlation 
information between SNPs included in the prediction 
models from the phase 3, 1000 Genomes Project data of 
European ancestry [17]. We calculated the PWAS test 
statistic Z-score = w’Z/(w’Σs,sw)1/2, where the Z is a vec-
tor of standardized effect sizes of SNPs for a given pro-
tein (Wald z-scores), w is a vector of prediction weights 
for the abundance feature of the protein being tested, and 
the Σs,s is the LD matrix of the SNPs estimated from the 
1000 Genomes Project as the LD reference panel. The 
Bonferroni correction P-value < 0.05 was used to deter-
mine significant associations between genetically pre-
dicted protein concentrations and AD risk.

Ingenuity Pathway Analysis (IPA, Ingenuity System 
Inc, USA)) and Protein–Protein Interaction analysis 
via STRING database (version 12.0) with 0.400 confi-
dence level [26] was implemented to cluster and clas-
sify enriched pathways for the identified proteins using 
default interaction resources, including Textmining, 
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Experiments, Databases, Co-expression, Neighbor-
hood, Gene Fusion, and Co-occurrence. We also inves-
tigated potentially repositionable drugs targeting the 
genes encoding associated proteins, by using the GREP 
(Genome for REPositioning drugs) tool [27]. We fur-
ther conducted molecular docking analysis considering 
ATP1A1 protein as the drug target protein and almitrine 
and ciclopirox as the drug agents [28].

Results
In this study, potential predictors were identified for 1870 
proteins, and protein prediction models were successfully 
established for 1864 proteins. For the 1413 of the remain-
ing proteins, there was no SNP showing an association at 
FDR < 0.05 for cis SNPs and P-value ≤ 5 ×  10−8 for trans 
SNPs. After internal and external validation, there were 
1389 proteins showing internal and external validation 
performance of R2 ≥ 0.01. The median external validation 
R2 was 0.06. There were 459, 189, and 38 proteins that 
showed external validation R2 ≥ 0.1, 0.2, and 0.5, respec-
tively. Overall, proteins that could be predicted well in 
INTERVAL subcohort 1 also tended to be predicted well 
in subcohort 2 in external validation analyses (a corre-
lation coefficient of 0.96 for R2 in two data sets; Fig. 1). 
Using the TWAS/FUSION framework, we examined the 
association for a total of 1340 proteins. For the remain-
ing 49 proteins, more than half of the SNPs included 
in the models were not present in the AD GWAS sum-
mary; therefore, their associations with AD risk were not 
considered. We identified 69 proteins with genetically 

predicted concentrations showing associations with AD 
risk after Bonferroni correction (P-value < 3.01 ×  10−5) 
(Table  1; Fig.  2). Of those 69 proteins, positive associa-
tions were observed for 45 of them, and inverse associa-
tions were observed for 24 (Table 1; Fig. 2).

For those proteins associated with AD risk, the Core 
Analysis was performed in Ingenuity Pathway Analy-
sis. Assembly of RNA Polymerase I Complex and DNA 
Double-Strand Break Repair by Non-Homologous End 
Joining were two canonical pathways showing signifi-
cant enrichments at P < 0.05 (Table S2; Figure S1). In 
the Network Analysis, Cell-To-Cell Signaling and Inter-
action, Hematological System Development and Func-
tion, Immune Cell Trafficking was identified which 
involved 19 associated proteins (Table S3; Figure S2). 
Based on the Disease and Biological Functions analy-
sis, the top disease functional categories identified were 
shown in Table S4.

Protein interactions of 69 associated proteins were 
investigated using the STRING database (Figure S3). In 
the network, five proteins (ILT-4, PRPC, SHPS1, Siglec-3, 
and Siglec-9) had three or more interactions with other 
proteins. Among them, Siglec-3 (known as CD33) was 
reported as a risk factor for AD and both the mRNA 
level and protein abundance were found to be increased 
in AD patients compared to the age-matched controls 
[29]. This finding is consistent with our current study 
(Z-score = 4.47, P-value = 7.78 ×  10−6).

Based on The Anatomical Therapeutic Chemical (ATC) 
test using GREP, the drugs almitrine and ciclopirox 
targeting ATP1A1 were suggested to have a potential 
for being repositioned for AD treatment (odds ratio 
(OR) = 63.0; P = 0.022 for almitrine; OR = 35.9, P = 0.035 
for ciclopirox).

For molecular docking analysis, we downloaded the 
3D structure of ATP1A1 protein from Protein Data Bank 
(PDB) with source code 3KDP and almitrine and ciclopirox 
drug from the PubChem database [30, 31]. AutoDock-Vina 
produced − 7.6 kcal/mol binding energy for ATP1A1 pro-
tein with almitrine drug agent and − 6.2 kcal/mol binding 
energy for ATP1A1 protein with ciclopirox drug agent. 
Figure 3 showed the 3D structure (left) and 2D schematic 
diagram (right) of the ATP1A1 potential target and almi-
trine drug with interacting amino acids: Leu80, Thr81, 
Met164, Arg198, Phe245, Ala271, Thr272, Ala274, Ser275, 
Asp740, Val741, Gln744, and Ala745. Figure 4 showed the 
3D structure (left) and 2D schematic diagram (right) of the 
ATP1A1 potential target and ciclopirox drug.

Discussion
To our knowledge, the present study is the first large 
population-based study to systematically investigate the 
associations between genetically predicted circulating 

y = 1.01 x − 0.00087, R2 = 0.96
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protein concentrations in plasma and AD risk using 
genetic instruments of comprehensive protein prediction 
models. Overall, we identified 69 proteins that were sig-
nificantly associated with AD risk after Bonferroni cor-
rection. If validated in future studies, our findings could 
add substantial new knowledge to the etiology of AD and 
provide a list of protein markers to facilitate precision 
preventive or therapeutic trials of AD.

Recently, plasma proteins including Aß42 and phos-
phorylated tau (p-tau217, p-tau181, and others) have 
been identified as promising plasma biomarkers for 
clinically and pathologically defined AD [32–34]. While 

these biomarkers will be incredibly useful for partici-
pant risk stratification, it remains vitally important to 
identify additional AD biomarkers to further under-
stand the pathophysiological processes leading to AD. 
By examining associations of genetically predicted pro-
tein levels in plasma with AD risk, we are able to go 
beyond a traditional examination of protein-AD associ-
ation and begin to understand whether proteins may be 
causally relevant. For example, although plasma levels 
of YKL-40 [35] have been associated with AD, we did 
not observe evidence of an association for genetically 
predicted levels of YKL-40 (Z = 1.50; P = 0.13). This 
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Fig. 2 Associations Z scores for proteins showing an association at Bonferroni corrected P‑value ≤ 0.05 with AD risk

Fig. 3 The 3D structure (left) and 2D schematic diagram (right) of the ATP1A1 potential target and almitrine drug
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finding seems to support that although specific proteins 
such as YKL-40 could be strong biomarkers, they may 
not be causally relevant.

We identified multiple AD-associated proteins using 
proteomic and genetic methods that were reported 
for the first time (Table 1). For some of them, there is 
already existing evidence from functional work sup-
porting their potential links with AD. For example, 
cofilin-1, as a major actin depolymerizer in the central 
nervous system, plays a crucial role in maintaining the 
structure and proper function of neurons [36]. Cofilin 
rods, which are primarily composed of actin and cofi-
lin-1 and form in response to stressing conditions, have 
been suggested to be associated with neurodegenera-
tive diseases such as AD by disrupting dendritic trans-
portation and inducing synaptic dysfunction [36, 37]. 
Additional research is warranted to understand the 
identified associations for the other proteins.

By using GREP, the drugs almitrine and ciclopirox 
were suggested to be potentially repositionable for AD 
treatment. A double-blind controlled study involv-
ing patients with memory loss, lack of concentration, 
impaired mental alertness, and emotional instability 
supported that almitrine-raubasine could improve cog-
nitive impairments [35]. Another controlled multicenter 
study investigating patients with cognitive decline 
(assessed by MMSE, SCAG) again suggested almitrine-
raubasine significantly improved symptomatology com-
pared with placebo [38]. Three other trails conducted 
in China involving 206 patients with vascular dementia 
also supported significant beneficial effect of almitrine-
raubasine combination on the improvement of cogni-
tive function measured by MMSE [39], although high 
risk of bias was observed. Other research supported that 
ciclopirox could protect neuronal cells from cell death 
and astrocytes from peroxynitrate toxicity [40, 41]. 

Future work may be warranted to further investigate 
whether almitrine and ciclopirox can indeed treat AD.

The strengths of our study include a high statistical 
power to identify AD-associated proteins given the large 
sample size in the main association analysis. Instead of 
merely using individual protein quantitative trait loci 
(pQTL) as instruments, we developed comprehensive 
protein genetic prediction models using a state-of-the-
art method and externally validated their performance 
before applying them to downstream association tests. 
Our previous work has supported that compared with 
individual QTLs, comprehensive prediction models 
can better capture genetically regulated components 
of molecular levels and thus further increase statistical 
power [42]. In two recently published studies, pQTLs in 
plasma were used to assess proteins potentially associated 
with AD risk [43, 44]. It is expected that the current work 
should have improved power as well as scope compared 
with these two existing studies. Particularly, in Walker 
et  al. [44], only proteins showing an association for the 
directly measured levels were tested. In Yang et al. [43], 
a relatively smaller dataset (n = 636) was used to deter-
mine plasma pQTLs. Correspondingly, a smaller number 
of pQTLs for 127 proteins were identified for associa-
tion analyses. In Wingo et  al. [45], prediction models 
for 376 proteins in brain tissue were established, and 13 
proteins were identified to be associated with AD risk. 
It is also worth noting that in the previous studies, AD 
GWAS summaries involving a less number of cases and 
controls were employed. Walker and Yang utilized the 
GWAS summary data from the Kunkle study [46], com-
prising 21,982 clinically diagnosed AD cases and 41,944 
cognitively normal controls, while Wingo employed the 
AD GWAS summary data from the Jansen study [11], 
encompassing 71,880 cases (clinically diagnosed AD and 
AD-by-proxy) and 383,378 controls. In the present study, 

Fig. 4 The 3D structure (left) and 2D schematic diagram (right) of the ATP1A1 potential target and ciclopirox
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we utilized a more comprehensive GWAS summary data 
from a more recent study, including 85,934 cases (com-
prising 39,106 clinically diagnosed AD and 46,828 proxy 
AD) and 401,577 controls. We checked the associations 
of the proteins reported in these previous studies in the 
current work. Interestingly, only three of the reported 
proteins showed consistent associations (same effect 
direction and nominal P-value < 0.05) in the current work 
(Table S5). To further examine the robustness of these 
results, we extended our examination by using two inde-
pendent protein genetic prediction models established by 
others using independent methods, namely Atherosclero-
sis Risk in Communities (ARIC) European ancestry mod-
els [47] and INTERVAL cis-models [48]. Notably, when 
we focused only on plasma, a majority of the examined 
proteins did not exhibit significant associations with the 
risk of AD when using either ARIC European ancestry or 
INTERVAL cis-models. This observation that aligns well 
with results based on our developed models suggests that 
these prior findings could potentially be false positives. 
Again, such a discrepancy could be potentially attributed 
to the relatively limited utility of individual pQTL SNPs 
in fully elucidating the genetically regulated components 
of protein levels. Further studies are warranted to better 
characterize the other previously reported proteins.

Several limitations of the current work also need to be 
acknowledged. First, our findings may be subject to poten-
tial pleiotropic effects, limiting the ability to draw causal 
insights. Second, given the nature of our study of using 
genetic instruments to predict plasma protein levels, we 
are only able to capture the genetically regulated compo-
nents of the protein concentrations, without incorporat-
ing the components influenced by exogenous exposures. 
Like the concept of transcriptome-wide association studies 
(TWAS), our proteome-wide association study (PWAS) 
aims to investigate the relationship between the genetically 
determined components of protein levels and disease risk. 
Further prospective studies with measured protein levels 
in pre-disease plasma samples are needed to better evalu-
ate the relationship. Finally, when we establish genetic 
models to estimate such genetically determined compo-
nents of protein levels, we carefully controlled for age, 
sex, duration between blood draw and processing, and top 
genetic principal components. However, we acknowledge 
that specific factors such as smoking and body mass index 
(BMI) were not controlled for during model construction 
using the INTERVAL dataset due to a lack of relevant data 
available to us [49]. Future studies are in need to validate 
our findings.

In conclusion, in this large association study using 
genetic instruments, we identified multiple novel 
AD risk-associated proteins. If validated with further 

investigations, our study may add additional knowledge 
to the underlying mechanisms of AD.
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