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Abstract 

Background Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide asso-
ciation study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline 
and dementia.

Methods We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) 
delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship 
between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quan-
titative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and tran-
script levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. 
To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. 
Analyses of differential expression in brain tissues were conducted for pathway component genes.
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Results The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all 
tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression 
in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intri-
cately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, 
exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately 
linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues.

Conclusions VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement 
of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.

Keywords Genome-wide association study, Memory, Expression, Immunity, Multi-omics, Delayed recall

Background
Delayed verbal declarative memory (VDM) performance, 
commonly measured by paragraph and word list delayed 
recall tests, is an important predictor of Alzheimer’s dis-
ease (AD) [1]. Genome-wide association studies (GWAS) 
have leveraged VDM performance (heritability≈30–52% 
[2, 3]) to identify variants influencing brain aging and AD 
susceptibility. The largest such GWAS, led by the Cohorts 
for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Cognitive Working Group, identified three 
significant chromosomal regions (near APOE, HS3ST4, 
and SPOCK3) in a sample of 29,076 older non-demented 
participants of European descent [2]. A genetic risk score 
combining fifty-eight independent suggestive variants 
was associated with AD pathology (neurofibrillary tan-
gle density and amyloid plaque burden) in autopsy sam-
ples [2], demonstrating that genetic studies of VDM can 
provide insight into the molecular contributors to AD 
pathobiology.

GWAS often implicate non-coding regions suspected 
to influence regulation [4], lack power to detect the 
small effect sizes bestowed by most genetic variants [5], 
are encumbered by the heterogeneity of genetic effects 
across studies [6], and have severe multiple testing cor-
rections [5, 7, 8]. The integration of additional biologi-
cal resources and aggregation of effects across genes 
and pathways can address these limitations and facili-
tate the interpretation of GWAS results [9] to under-
stand biological functions [4]. Both multi-omics and 
pathway analyses can integrate GWAS findings with 
functional information from publicly available data-
bases to gain insight into complex trait pathobiology [9] 
and provide context to interpret genotype–phenotype 
relationships [4].

Debette et  al. identified a VDM-associated genetic 
variant in proximity to genes linked to immune 
responses [2]. Additionally, they found that variants 
associated with suggestive memory risks correlate 
with gene expressions in human hippocampus sam-
ples. Building upon these findings, our study endeav-
ors to expand beyond the limitations of prior research 

by delving into the potential functions associated with 
VDM-related genetic variants. To achieve this, we 
employed multi-omics analyses to explore the intricate 
relationship between VDM-associated genetic variants 
and expression quantitative trait loci (eQTLs), methyla-
tion quantitative trait loci (meQTLs), and gene expres-
sions across diverse tissue types. Our investigation also 
meticulously examined how the associations of genetic 
variants with VDM are intertwined with the regulatory 
activities of transcription factors (TFs) and microR-
NAs, along with immune gene functions. Additionally, 
we undertook the task of evaluating the genetic path-
ways that underlie the associations related to para-
graph delayed recall (PAR-dr) and word list delayed 
recall (WL-dr)[4], along with exploring links between 
pathway gene expressions and cognitive status in brain 
tissues.

Methods
Participating cohorts and phenotypes
This study utilized data from twenty-seven cohorts 
comprising individuals of Caucasian descent, divided 
into 19 for the initial discovery phase and 8 for replica-
tion. The dataset included HapMap-imputed genome-
wide single-nucleotide polymorphism (SNP) data, and 
at least one test of PAR-dr or WL-dr. Consequently, we 
conducted the analyses in this study using summarized 
data from a prior GWAS meta-analysis that specifically 
focused on PAR-dr and WL-dr within these cohorts [2]. 
Detailed information about these cohorts can be found 
in the Supplemental Text and Tables S1 and S2.

Participants provided written informed consent and 
all studies were approved by their respective institutional 
review boards. The nineteen discovery cohorts (8 for 
PAR-dr and 15 for WL-dr) collectively represented 29,076 
 (NPAR- dr = 6674;  NWL-dr = 24,604) dementia- and stroke-free 
Caucasian participants aged 45 years or older (Figure S1). 
The eight replication cohorts represented approximately 
8000  (NPAR- dr = 8009;  NWL-dr = 7518) stroke-free Caucasian 
participants aged 65  years or older; dementia assessment 
was not universally available in the replication cohorts and 
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seven of the eight replication cohorts were restricted to 
women with some college education.

For the PAR-dr tests, participants were verbally pre-
sented one or two stories and asked to recall as many 
paragraph elements as possible after a 20- or 30-min 
delay and an interceding immediate recall task. For the 
WL-dr tests, participants were verbally or visually pre-
sented a list of semantically related or unrelated words 
(10–16 words over 1–5 exposure trials) and asked to 
recall as many words as possible after a 3- to 30-min 
delay and an interceding immediate recall task. The 
outcomes were the total number of items recalled dur-
ing the delayed recall tasks.

Cohort‑specific genetic associations
Single‑variant associations
Separate GWAS analyses were performed for PAR-
dr and WL-dr within each cohort; the cohort-specific 
summary results for each trait were obtained from the 
CHARGE consortium. Within each cohort, a linear 
regression model of the number of story elements or 
words recalled was fit onto the number of minor alleles 
at each SNP while adjusting for age and sex, as well as 
study site, familial structure, and population substruc-
ture if necessary [2]. Subsequently, single-variant asso-
ciations from each participating cohort were gathered 
for further analysis.

Gene associations
We measured gene associations from independent 
SNPs in each cohort. GWAS SNPs (≈1.5 to 2.4 mil-
lion per GWAS) were mapped to genes (≈35,000 to 
38,000 including non-RNA coding genes) using 2  kb 
upstream/downstream boundaries of the transcription 
start/stop sites (Tables S1 and S2), referencing genome 
Build GRCh37. Within each gene, pairwise SNP corre-
lation coefficients (r2) were calculated using VCFtools 
[10] and the European reference data from the 1000 
Genomes project. Clumping was conducted to select 
independent SNPs through an iterative process; at each 
step, we selected the SNP with the strongest associa-
tion and removed SNPs correlated (r2 > 0.2) to it.

We computed Simes’ combination p-value of gene 
[11] as M = min(k • p(i)/i) , where k was the number 
of total independent SNPs and p(i) was the ith smallest 
p-value. Gene uniform-score (U-score) [12] was applied 
to measure gene association and it was calculated as 
= (

L
j=1

I Mj < M + 0.5
L
j=1

I Mj = M )/L , where 
Mj was the combination p-value of the jth gene and L 
is the total number of genes. Gene U-score ranges from 
zero to one, and it estimates the proportion of genes 
with a stronger association than the tested gene. Genes 

with U-scores ≤ 0.05 were selected as phenotype-asso-
ciated genes.

Meta‑analysis of genetic associations
Single‑variant associations
We employed METAL [13] to conduct a sample-size 
weighted meta-analysis for each phenotype (PAR-dr 
and WL-dr) and genetic variant across the discovery 
cohorts alone and the discovery and replication cohorts 
together.

Gene associations
For each gene, we counted the number of cohorts 
with U-scores less than or equal to 0.05. Meta-analy-
sis p-value of each gene (Gene_p) was computed from 
binomial distribution and Bonferroni-corrected sig-
nificance threshold was set as 1E − 06 (0.05/50,000 to 
adjust for 50,000 genes tested).

Multi‑omics function analyses
The overall design of the multi-omics function analyses 
for single-variant and gene associations is depicted in 
Fig. 1.

Functions of single‑variant associations
We employed logistic regression to evaluate the rela-
tionship between VDM-associated genetic variants 
and eQTLs and meQTLs across different tissues. We 
extracted significant cis-eQTLs within ± 1  MB of tran-
scription start sites from 44 different tissues of the 
GTEx Project [14]. We similarly extracted significant 
eQTLs and meQTLs from a genome-wide study of 
110 human hippocampal biopsies [15]. We identified 
independent SNPs from meta-analysis of discovery 
cohorts and examined their LD status with eQTLs (and 
meQTLs for the hippocampal biopsy data) from each 
tissue alone and all tissues combined. The LD status 
indicated whether the SNP was in high LD (r2 ≥ 0.8) 
with any eQTL or meQTL within 1 MB. We performed 
logistic regression of the LD status on the negative log 
base-10 of the single-variant association p-values in 
each tissue and all tissues combined. We conducted 
10,000 permutations to adjust for multiple tests; per-
mutation p-values ≤ 0.05 were considered significant.

Functions of gene associations
We utilized logistic regression to investigate potential 
links between VDM gene associations and gene expres-
sion, immune function, and transcription factor (TF) and 
microRNA regulation. We extracted GTEx gene expres-
sion, measured as reads per kilobase per million reads 
(RPKM), from 53 tissues via UCSC genome browser [16]. 
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A gene was highly expressed if its RPKM ranked in the 
top 5% of all genes for that tissue. We extracted 41 TFs 
and 52 microRNAs regulating at least ten genes from the 
Open Regulatory Annotation database (ORegAnno) [17]. 
TF regulation for a gene was identified if it was regulated 
by the TF/microRNA. Lastly, the immunity function 
of a gene was identified if it was annotated as a human 
immune gene in the InnateDB [18]. We fitted logistic 
models of status of gene expression, TF regulation, and 
immune function onto the −  log10 U-scores for the gene 
association. An adjusted p-value ≤ 0.05 was considered 
significant, based on 1000 permutation tests.

Pathway enrichment of genetic associations
Cohort‑specific pathway associations
Gene set enrichment analyses were performed to exam-
ine VDM-associated pathways based on cohort-specific 
GWAS of PAR-dr and WL-dr. We employed the uniform-
score gene-set analysis (USGSA) method [12] to test 
pathways enriched for genes with U-scores ≤ 0.05 among 
10,295 curated gene sets from the MSigDB knowledge 
base [19] in every cohort. Pathway enrichment analysis 
was conducted using the R package of snpGeneSets [20]. 
For a MSigDB gene set ( � ) and a set of genes ( � ) with 
U-scores ≤ 0.05, the probability that a component gene of 
�(Gi ) belongs to � is defined as p� = Pr(Gi ∈ �|Gi ∈ �) 
and estimated as p̂� =

∑
iI(Gi∈�

⋂
Gi∈�)∑

iI(Gi∈�)
 . In contrast, 

p0 = 0.05 is the null probability of a random gene ( Gi ) 

belonging to � . The pathway enrichment effect, 
E = p̂� − p0 , shows the increased probability of a path-
way component gene (versus a random gene) to have a 
U-score ≤ 0.05, and the standard error (SE) is estimated 
as SE =

√
p0 · (1− p0)/

∑
iI(Gi ∈ �) . The pathway exact 

p-value was calculated from the hypergeometric distribu-
tion; we adjusted for multiple testing and correlations 
due to genes belonging to multiple pathways by 10,000 
permutations, yielding the adjusted p-value  (path_pk) in 
the kth cohort.

Meta‑analysis of pathway enrichment over cohorts 
(Approach 1)
Two meta-analyses, random-effects (RE) model and the 
binomial test, were employed to estimate the effects 
of pathway enrichment across different cohorts and to 
ascertain whether the occurrence of VDM-associated 
pathways in the participating cohorts exhibited a non-
random pattern (Figs.  2 and S2). Both meta-analyses 
were performed in the discovery cohorts alone, the rep-
lication cohorts alone, and all cohorts combined. The RE 
meta-analysis, performed using the R package metafor 
[21], incorporated the inverse variance of the effect esti-
mate as a cohort weight. The RE model produced a sum-
mary enrichment effect estimate and a p-value (RE_p) of 
tested gene set over cohorts. The significance threshold 
for RE_p in the meta-analysis of discovery cohorts alone 
and the discovery and replication cohorts combined was 

Fig. 1 Design of the multi-omics analyses
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4.86E − 06 after Bonferroni correction (0.05/10,295). 
In the replication cohorts, a Bonferroni correction 
accounted for the number of pathways tested.

The binomial test was applied to count the number of 
cohorts with significant pathway enrichment and com-
pute the exact p-value from binomial distribution (Sup-
plemental Text). For the discovery cohorts alone and the 
discovery and replication cohorts combined, the bino-
mial test was based on permutation-adjusted pathway 
p-values  (path_pk) from individual cohorts and p-value 
 (Bin_pA) ≤ 0.05 was considered significant. For replica-
tion cohorts alone, the p-value (Bin_p) was based on 
pathway p-value from individual cohorts and Bonferroni 
adjustment was adopted.

Pathway enrichment of significant genes over cohorts 
(Approach 2)
Significant genes with meta-analysis p-values (i.e., 
Gene_p ≤ 1E − 06) were selected and tested for enrich-
ment in a particular MSigDB gene set. The exact pathway 
p-value  (Path_pE) was calculated from the hypergeomet-
ric distribution; pathway p-value  (Path_pA) adjusted for 
multiple testing was obtained via 10,000 permutations 
with significance threshold of 0.05.

Differential expression (DE) analysis of significant pathway 
component genes
We performed DE analyses using significant component 
genes (Gene_p ≤ 1E-06) from VDM-associated pathways. 
Three curated human (GDS4135 [22], GDS4231 [23], 
GDS4358 [24]) and rodent (GDS2082 [25], GDS2639 

[26], GDS520 [27]) gene expression studies of cognitive 
traits were selected from the Gene Expression Omni-
bus [28]; descriptions of each study are provided in the 
Supplemental Text. The rodent studies used homologs 
(identified through the NCBI HomoloGene tool [29]) in 
hippocampal tissue.

For both human and rodent studies, the gene expres-
sion values were normalized by quantile normalization 
using the R package preprocessCore [30]. We used linear 
models from the R package limma [31] to analyze the DE 
of each gene across cognitive statuses; an F statistic and 
p-value were generated after moderating the test stand-
ard errors by empirical Bayesian modeling. The gene-set 
DE test was based on designed contrast tests for compar-
ing expression levels by cognition status and utilized the 
mean-rank method [32] implemented in limma. P-values 
were obtained through permutation tests, with signifi-
cance defined as p-values ≤ 0.05.

Results
Multi‑omics function analysis of single‑variant associations
Cross-cohort single-variant memory associations were 
related to markers of regulation (eQTLs and meQTLs) 
as shown in Fig. 3A and Table S3. Regardless of the tis-
sue tested, variants highly associated with VDM pheno-
types had significantly greater odds of being in high LD 
with eQTLs and meQTLs; the odds ratio (OR) estimates 
ranged from 1.43 (β = 0.36) to 2.14 (β = 0.76). Each power 
of 10 increase in association (e.g. p-value decreasing 
from 1E − 05 to 1E − 06) corresponded to at least a 1.43 
increase in the odds of being in high LD with an eQTL 

Fig. 2 Pictorial representation of the two approaches used to derive the overall pathway results from the cohort-specific genome-wide 
associations
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Fig. 3 A Relationship between the strength ((− log 10 (p-values)) of verbal declarative memory single-variant associations and being in high 
linkage disequilibrium (r2 > 0.80) with eQTLs and meQTLs across tissues. The shapes with dotted lines represent the odds ratios of being in linkage 
disequilibrium with an eQTL or meQTL given a one unit increase in SNP-memory association significance (p-value decreasing by a power of 10). 
The length of dotted line denotes the 95% confidence intervals of the odds ratios. B Relationship between the strength ((− log 10 (U-score)) 
of verbal declarative memory gene associations and regulation by known transcription factors and microRNAs. The shapes with dotted lines 
represent the odds ratios of being regulated by a transcription factor or microRNA given a one unit increase in gene association significance 
(U-score decreasing by a power of 10). The length of dotted line denotes the 95% confidence intervals of the odds ratios. C Relationship 
between the strength ((− log 10 (U-score)) of verbal declarative memory gene associations and annotation as an immunity gene. The heights 
of the bars represent the odds ratios of being an annotated immune gene given a one unit increase in gene association significance (U-score 
decreasing by a power of 10). The bars denote the 95% confidence intervals of the odds ratios



Page 7 of 15Mei et al. Alzheimer’s Research & Therapy           (2024) 16:14  

or meQTL. The OR of PAR-dr single-variant associations 
exceeded those of WL-dr. The largest OR (2.14; 95% CI 
[1.76, 2.60]) corresponded to the effect of PAR-dr sin-
gle-variant associations on eQTLs from hippocampal 
biopsies in discovery cohorts, with an OR of 1.82 (95% 
CI [1.59, 2.09]) in the discovery and replication cohorts 
combined.

Multi‑omics function analysis of gene associations
VDM gene associations were implicated in gene expres-
sion, regulation by TF/microRNA, and immunity func-
tion. As shown in Table 1, genes more strongly associated 
with WL-dr exhibited decreased odds of being highly 
expressed (RPKM in the top 5%) in four brain tissues, 
namely the anterior cingulate cortex, caudate, hippocam-
pus, and pituitary gland. For the former three tissues, 
the negative association is significant in the discovery 
cohorts. For the pituitary gland, the negative associa-
tion is significant in the joint discovery and replication 
cohorts. We failed to detect any significant relationship 
between PAR-dr gene associations and expression.

Genes more strongly associated with VDM had sig-
nificantly increased odds of being regulated by thirty-
one TFs and two microRNAs (Fig.  3B and Table S4); 
thirty TFs were implicated for both PAR-dr and WL-dr 
using all cohorts. Their ORs ranged from 1.12 (95% CI 
[1.06, 1.18]) for RBL2 to 3.78 (95% CI [2.10, 6.81]) for 
hsa-miR-218-5p (95% CI [2.10, 6.81]), both of which 
were observed in the discovery WL-dr. The ORs were 
larger analyzing all cohorts than discovery cohorts alone 
with one exception, WL-dr gene associations and hsa-
miR-218-5p. Similarly, genes with stronger VDM asso-
ciations had greater odds of being immune genes. Both 
PAR-dr (OR = 1.19, 95% CI [1.11, 1.27]) and WL-dr 
(OR = 1.33,95% CI [1.24, 1.43]) gene associations were 
significantly related to immune gene functions when 
analyzing all cohorts (Fig. 3C).

Pathway enrichment analysis
Meta‑analysis of pathway enrichment over cohorts 
(Approach 1)
Six pathways, namely the set of genes upregulated with 
PSMD4 and the KEGG pathways of type I diabetes 
mellitus, graft-versus-host disease, allograft rejection, 
antigen processing and presentation, and viral myocar-
ditis, were significantly (p-values: RE_p ≤ 4.86E − 06 or 
 Bin_pA ≤ 0.05) associated with PAR-dr and WL-dr in 
discovery cohorts (Table 2). The enrichment effect sizes 
(12 ~ 28%) were similar for PAR-dr and WL-dr in dis-
covery cohorts; forest plots of the enrichment effects for 
each pathway and trait are displayed in Figure S3.

The type I diabetes pathway association with WL-dr 
was replicated (p-value: Bin_p = 0.006) in independ-
ent cohorts. The PSMD4 targets exhibited marginal 
(p-value: RE_p = 0.046) replication for WL-dr. The 
meta-analytic effect sizes were small in the replication 
cohorts (− 1 ~ 3%). All six pathways met significance cri-
teria (p-value: RE_p ≤ 4.86E-06 or  Bin_pA ≤ 0.05) for both 
delayed recall assessments in the joint meta-analysis of 
discovery and replication cohorts. However, the p-values 
and effect sizes (ranged from 6 to 19%) were generally 
attenuated compared to the values from the discovery 
cohorts alone.

Pathway enrichment of significant genes over cohorts 
(Approach 2)
The meta-analysis of gene associations across discovery 
cohorts yielded 69 and 173 genes significantly associ-
ated with PAR-dr and WL-dr, respectively (Table S5, 
p-value: Gene_p ≤ 1E-06); 66 genes were associated 
with both traits. Pathway enrichment analysis of signifi-
cant genes identified the same six significant pathways 
(p-value:  path_pA ≤ 0.05; Table 3) as the meta-analysis of 
cohort-specific pathway enrichments (approach 1). Path-
way effect sizes for PAR-dr (7 ~ 16%) were half those for 

Table 1 Significant tissue-specific correlation between GWAS associations and gene expression

Tissue Summary gene 
result

WL‑dr PAR‑dr

OR 95% CI Permutation‑
adjusted p‑value

OR 95% CI Permutation 
adjusted p‑
value

Brain anterior cingulate cortex Discovery 0.75 [0.64,0.87] 0.005 1.00 [0.88,1.15] 1.000

Joint 0.86 [0.75,0.99] 0.399 0.96 [0.84,1.10] 1.00

Brain caudate Discovery 0.78 [0.68,0.91] 0.026 1.03 [0.90,1.17] 1.000

Joint 0.91 [0.79,1.04] 0.897 0.98 [0.86,1.12] 1.000

Brain hippocampus Discovery 0.80 [0.69,0.92] 0.046 0.99 [0.87,1.13] 1.000

Joint 0.89 [0.77,1.02] 0.725 0.93 [0.81,1.07] 0.997

Pituitary Discovery 0.90 [0.78,1.03] 0.838 0.93 [0.81,1.07] 0.998

Joint 0.78 [0.68,0.90] 0.021 0.85 [0.74, 0.98] 0.350
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Table 2 Significant pathways identified by Approach 1 (meta-analysis of cohort-specific pathway enrichment effects and tests)

This table shows the significant pathways identified through the meta-analysis of cohort-specific pathway enrichment effects (random effects model) or tests 
(binomial tests). Results are shown for the meta-analysis of discovery cohorts alone, replication cohorts alone, and the discovery and replication cohorts combined. 
Gene set (Size) is the name of the gene set and the number of genes it included. Effect indicates the increased probability of a pathway component gene to have a 
significant measure of association (U-score ≤ 0.05) compared to a random gene. SE is the standard error of the effect; PAR-dr and WL-dr are the meta-analysis results 
for the paragraph and word list delayed recall assessments, respectively. RE_p is the p-value from the meta-analysis using the random effects model.  Bin_pA is the 
meta-analysis permutation-adjusted p-value from the binomial test. Bin_p is the meta-analysis exact p-value from the binomial test that does not adjust for multiple 
testing. ǂOnly six pathways were tested for replication, thus the exact path p-values (Bin_p) were used instead of the permutation-adjusted adjusted p-values  (Bin_pA) 
when meta-analyzing pathway results across cohorts

Meta discovery
PAR‑dr WL‑dr

Gene set (size) Effect SE RE_p Bin_pA Effect SE RE_p Bin_pA

 Type 1 diabetes (44) 20.94% 1.22% 3.32E − 66 5.79E − 03 22.67% 1.72% 7.59E − 40 2.32E − 10

 PSMD4 targets (73) 14.33% 1.11% 7.24E − 38 5.79E − 03 15.40% 1.20% 8.44E − 38 1.83E − 07

 Graft-versus-host disease (42) 24.26% 1.69% 1.60E − 46 1.54E − 05 25.60% 2.07% 4.17E − 35 2.32E − 10

 Allograft rejection (38) 25.57% 1.34% 3.98E − 81 4.01E − 07 27.73% 1.99% 3.28E − 44 7.42E − 09

 Antigen processing and presentation (89) 12.53% 0.88% 1.52E − 46 5.79E − 03 13.05% 1.31% 1.70E − 23 3.52E − 06

 Viral myocarditis (73) 11.76% 0.94% 6.97E − 36  > 0.05 13.51% 1.04% 1.05E − 38 5.28E − 05

Meta replication
PAR‑dr WL‑dr

Gene set Effect SE RE_p Bin_pǂ Effect SE RE_p Bin_pǂ
 Type 1 diabetes 0.63% 1.47% 0.67 1.00 3.44% 1.83% 0.060 0.006

 PSMD4 targets 0.39% 1.01% 0.70 1.00 1.88% 0.94% 0.046 0.34

 Graft-versus-host disease  − 0.48% 1.28% 0.71 1.00 2.64% 1.36% 0.053 0.34

 Allograft rejection 0.28% 1.34% 0.83 1.00 1.42% 1.76% 0.42 0.34

 Antigen processing and presentation  − 1.25% 0.86% 0.15 1.00 2.19% 1.56% 0.16 0.34

 Viral myocarditis 0.40% 1.13% 0.72 0.34 1.52% 1.44% 0.29 0.057

Meta joint
PAR‑dr WL‑dr

Gene set Effect SE RE_p Bin_pA Effect SE RE_p Bin_pA

 Type 1 diabetes 10.78% 2.77% 1.01E − 04 0.04 15.98% 2.32% 6.23E − 12 6.11E − 08

 PSMD4 targets 7.36% 1.94% 1.50E − 04 0.04 10.69% 1.60% 2.70E − 11 9.71E − 06

 Graft-versus-host disease 11.88% 3.35% 3.97E − 04 8.57E − 04 17.60% 2.72% 1.04E − 10 6.11E − 08

 Allograft rejection 12.93% 3.38% 1.33E − 04 8.09E − 05 18.57% 3.02% 7.73E − 10 8.39E − 07

 Antigen processing and presentation 5.64% 1.86% 2.43E − 07 0.04 9.27% 1.48% 3.98E − 10 9.40E − 05

 Viral myocarditis 6.08% 1.61% 1.54E − 04 0.04 9.34% 1.47% 2.05E − 10 7.53E − 04

Table 3 Significant pathways identified by Approach 2 (candidate gene enrichment analyses of summary gene associations from 
discovery cohorts)

This table displays pathways that were significantly enriched for memory-associated genes using Approach 2 and USGSA on the discovery cohorts. Candidate gene 
set enrichment analyses were run on 69 and 173 memory-associated genes for PAR-dr and WL-dr, respectively. Please refer to the legend of Table 1 for descriptions of 
Gene Set, Size, PAR-dr, and WL-dr. Effect is the increased probability of a memory-associated gene to be from the specified pathway versus a random gene. SE is the 
standard error of the effect estimate;  Path_pEǂ is the exact pathway p-value based on the hypergeometric distribution;  Path_pA, the adjusted pathway p-value based 
on 10,000 permutations, took values “ < 0.001” for all displayed gene sets and outcomes and was omitted from the table

PAR‑dr WL‑dr

Gene set Size Effect SE Path_pEǂ Effect SE Path_pE ǂ

Type 1 diabetes 44 13.43% 0.69% 4.98E − 10 26.74% 1.10% 6.72E − 18

PSMD4 targets 73 9.38% 0.53% 2.13E − 10 18.64% 0.85% 2.56E − 18

Graft-versus-host disease 42 14.08% 0.70% 3.71E − 10 28.04% 1.13% 3.56E − 18

Allograft rejection 38 15.58% 0.75% 1.97E − 10 31.04% 1.18% 8.87E − 19

Antigen processing and presentation 89 6.53% 0.49% 3.80E − 08 12.97% 0.77% 6.14E − 14

Viral myocarditis 73 8.01% 0.54% 1.14E − 08 15.90% 0.85% 5.13E − 15
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WL-dr (13 ~ 31%). These six pathways harbored fifteen 
genes significantly associated with VDM in discovery 
cohorts (Table  4 and S6); eight and fifteen genes were 
significantly associated with PAR-dr and WL-dr, respec-
tively. There were 75–100% of discovery cohorts show-
ing the significant PAR-dr genes and 60–93% supporting 
the significant WL-dr genes (U-scores ≤ 0.05). All fifteen 
genes are members of the major histocompatibility com-
plex (MHC), with eleven present in all six significant 
pathways. One gene, HLA-DRA, exhibited marginal evi-
dence (p-value: Gene_p = 0.006) of replication for WL-dr 
with support from 38% of the replication cohorts.

DE analysis of significant pathway component genes
Fifteen significant genes from memory-associated path-
ways were differentially expressed by cognitive status 
in human brain tissue (Table  5); expression differed by 
Braak stage in astrocytes (p = 0.006) for the first data set 
(GDS4135) and by human immunodeficiency virus (HIV) 
cognitive impairment status (impaired infected ver-
sus uninfected controls) in brain tissues (p = 3.28E − 08) 
for the second data set (GDS4231). In basal ganglia of 
data set GDS4358, memory-associated pathway genes 
were differentially expressed across control, HIV-1 
infected only (HIV-only), HIV-1 infected with substan-
tial neurocognitive impairment (HIV-NCI), and HIV 
with neurocognitive impairment and HIV encephalitis 

(HIV-NCI-HIVE) groups (Trend I test; p = 3.33E − 05), as 
well as across the latter three groups after excluding con-
trol (Trend II test; p = 8.83E − 05). DE was found in the 
white matter tissue samples when controls were included 
(Trend I test; p = 0.03) but not when omitted (Trend II 
test; p = 0.50). No DE was found in the frontal cortex.

We also examined the DE of homologous genes in 
three rodent studies of hippocampal tissue. Twelve and 
six homologous genes were available in the house mouse 
and Norway rat, respectively (Table S7). Mean-rank 
tests confirmed DE of these genes in the hippocampus 
of house mice with age-related spatial memory defi-
cits compared to young mice (p = 0.03) for the data set 
GDS2082, Norway rats with impaired versus normal cog-
nition (p = 0.016) for the data set GDS2639, and Norway 
rats with age-dependent cognitive decline at 4, 14, and 
24 months for the data set GDS520 (p = 0.015).

Discussion
Debette et  al. conducted meta-analyses of PAR-dr 
and WL-dr GWAS data across cohorts participating 
in the CHARGE consortium. They identified a sig-
nificant VDM-associated variant located near genes 
involved in the immune response and found a correla-
tion between memory risk variants and gene expres-
sion in human hippocampal cells. They also conducted 

Table 4 Significant component genes from verbal declarative memory-associated pathways

This table shows significant gene-based tests results for the component genes from the six memory-associated pathways. The binomial test was used to meta-analyze 
the gene associations (U-scores) across cohorts. Gene is the gene name or symbol; GeneID is the NCBI gene identifier; PAR-dr and WL-dr represent the results of the 
gene-based tests for the paragraph and word list delayed recall traits, respectively; M is the number of cohorts in which the gene had a U-score ≤ 0.05; Gene_p is the 
meta-analysis p-value (significant for values ≤ 1E − 06)
a Indicates a gene that is a component of all six memory-associated pathways

Gene GeneID Meta discovery Meta replication Meta joint

PAR‑dr 
(M/Gene_p)

WL‑dr 
(M/Gene_p)

PAR‑dr 
(M/Gene_p)

WL‑dr 
(M/Gene_p)

PAR‑dr 
(M/Gene_p)

WL‑dr 
(M/Gene_p)

MHC Class 1 HLA-Aa 3105 5/1.54E − 05 10/2.32E − 10 1/0.34 1/0.34 6/8.09E − 05 11/3.76E − 09

HLA-Ba 3106 6/4.01E − 07 13/1.17E − 15 1/0.34 0/1.00 7/5.98E − 6 13/8.69E − 12

HLA-Ca 3107 8/3.91E − 11 14/8.73E − 18 0/1.00 0/1.00 8/3.50E − 7 14/3.25E − 13

HLA-Ea 3133 3/0.006 9/7.42E − 09 0/1.00 0/1.00 3/0.043 9/8.39E − 07

HLA-Fa 3134 3/0.006 9/7.42E − 09 2/0.057 0/1.00 5/8.57E − 04 9/8.39E − 07

HLA-Ga 3135 6/4.01E − 07 13/1.17E − 15 0/1.00 0/1.00 6/8.09E − 05 13/8.69E − 12

HLA-H 3136 3/0.006 12/9.64E − 14 2/0.057 1/0.34 5/8.57E − 04 13/8.69E − 12

MHC Class II HLA-DMAa 3108 6/4.01E − 07 11/5.53E − 12 0/1.00 1/0.34 6/8.09E − 05 12/1.96E − 10

HLA-DMBa 3109 7/5.98E − 09 12/9.64E − 14 1/0.34 0/1.00 8/3.50E − 7 12/1.96E − 10

HLA-DPA1a 3113 5/1.54E − 05 11/5.53E − 12 0/1.00 1/0.34 5/8.57E − 04 12/1.96E − 10

HLA-DPB1a 3115 5/1.54E − 05 11/5.53E − 12 0/1.00 0/1.00 5/8.57E − 04 11/3.76E − 09

HLA-DPB2 3116 7/5.98E − 09 11/5.53E − 12 0/1.00 0/1.00 7/5.98E − 06 11/3.76E − 09

HLA-DQA2 3118 7/5.98E − 09 10/2.32E − 10 0/1.00 0/1.00 7/5.98E − 06 10/6.11E − 08

HLA-DQB2 3120 7/5.98E − 09 11/5.53E − 12 0/1.00 0/1.00 7/5.98E − 06 11/3.76E − 09

HLA-DRAa 3122 5/1.54E − 05 13/1.17E − 15 0/1.00 3/0.006 5/8.57E − 04 16/2.67E − 16
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pathway analyses focused on molecules with physical 
contact [2]. In this study, we expanded beyond the con-
fines of prior research and adopted a more comprehen-
sive approach to investigate the potential functions of 
VDM-associated variants. Our investigation demon-
strated that VDM-associated variants are in high link-
age disequilibrium with eQTLs across all 44 tissues and 
meQTLs in the hippocampus. Our analyses indicated 
that VDM-associated genes have reduced odds of being 
highly expressed in four specific brain tissues. Further-
more, VDM-associated genes appeared to be regulated 
by thirty-one TFs and two microRNAs, while also being 
implicated in immune function. Our analyses high-
lighted six pathways, including one relevant to type I 
diabetes, significantly correlated with both PAR-dr and 
WL-dr. Remarkably, these pathways encompassed fif-
teen MHC genes intricately tied to VDM performance. 
These MHC genes exhibited differential expression by 
cognitive status in brain tissues.

This investigation showcased the ability of multi-
omics and pathway analyses to attribute function to 
GWAS associations. Our findings implicate gene expres-
sion regulation and immunity as functions underlying 
VDM genetic associations in older non-demented indi-
viduals of European descent. The multi-omics analyses 
showed that PAR-dr and WL-dr single-variant associa-
tions exhibited LD with eQTLs in every tissue and 
meQTLs in the hippocampus, bolstering evidence that 
trait-associated variants are enriched in eQTLs [9, 33] 
and regions involved in expression regulation [34, 35]. 
The connection between VDM-associated variants and 
meQTLs in hippocampal tissue echoed the association 

of Alzheimer’s neuropathology and disease with methyla-
tion changes in brain tissue (including the hippocampus) 
[36–38]. We observed a lack of tissue specificity in the 
eQTL analysis which is similar to other memory-related 
traits [39]. However, the strongest eQTL relationship was 
with PAR-dr genetic associations in the hippocampus, a 
brain region involved in the acquisition of new memories 
and verbal and narrative memory [40].

Stronger WL-dr gene associations were connected 
to expression downregulation in four brain tissues (the 
anterior cingulate cortex, caudate, hippocampus, and 
pituitary gland), while stronger PAR-dr and/or WL-dr 
gene associations implicated regulation by thirty-one 
TFs and two microRNAs and classification as immune 
genes. Sequence variation in TFs and their binding site 
clusters, as well as microRNA expression levels (specifi-
cally hsa-miR-218–1-5p), have been associated with AD 
[41–43]. Similarly, the increased odds of immune func-
tion ascribed to genetic associations are supported by 
previous studies of AD [41, 44].

While Debette et  al. utilized summarized statistics to 
pinpoint VDM-associated pathways through a network of 
molecules with physical interactions [2], our study took 
a different approach. We leveraged the Molecular Signa-
tures Database (MSigDB) to broaden our pathway analy-
sis to include 10,295 curated gene sets. In this endeavor, 
we gathered individual GWAS results from each cohort 
and examined VDM-associated pathways within their 
respective contexts. We conducted meta-analysis using 
the random-effect model to gauge pathway enrichment 
effects across cohorts and employed binomial meta-anal-
ysis to assess if VDM-associated pathways within cohorts 

Table 5 Differential expression analysis of significant component genes from verbal declarative memory-associated pathways

This table contains results for the differential expression analysis (mean-rank test) of genes in memory-associated pathways by cognitive status in human and rodent 
samples. GEO_ID is the curated Gene Expression Omnibus data set identifier; PUBMED_ID is the PUBMED publication identifier. N_genes is the number of component 
genes that have expression measured in the given dataset (refer to Supplementary Tables S4 and S5 for the gene lists). Contrast indicates the cognitive function 
groups across which we contrasted the differential expression of component genes. p-value is the p-value from the gene-set differential analysis. The trend I test 
assessed differential expression across control, HIV-only, HIV-NCI, and HIV-NCI-HIVE statuses. The trend II test compared expression across the HIV-only, HIV-NCI, and 
HIV-NCI-HIVE statuses

GEO_ID PUBMED_ID Organism Tissue N_genes Contrast p‑value

GDS4135 21705112 Human Astrocytes 13 Braak stage I-II, III-IV, V-VI 0.006

GDS4231 21909266 Human Brain tissues 13 HIV cognitive impairment vs uninfected control 3.28E − 08

GDS4358 23049970 Human Basal ganglia 13 Trend I 3.33E − 05

Trend II 8.83E − 05

Frontal cortex 13 Trend I 0.74

Trend II 0.99

White matter 13 Trend I 0.03

Trend II 0.50

GDS2082 15169854 House mouse Hippocampus 12 15-month-old mice with age-related cognitive 
deficit vs 2-month-old normal mice

0.03

GDS2639 17376971 Norway rat Hippocampus 6 Impaired vs. unimpaired cognition 0.016

GDS520 12736351 Norway rat Hippocampus 5 Age 4, 14, and 24 months 0.015
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exhibited non-random trends. To validate our findings, 
replication cohorts were examined alongside the original 
discovery cohorts in this study.

The pathway enrichment analysis identified six VDM-
associated pathways (type 1 diabetes, graft-versus-host 
disease, allograft rejection, antigen processing and pres-
entation, viral myocarditis, and targets of PSMD4 regu-
lation) which were all interrelated within the framework 
of immunity. Antigen presentation, the process by which 
MHC proteins bind and transport ingested antigens to 
the surface of antigen presenting cells where they can be 
recognized by T-cells [45, 46], is critically involved in the 
early stages of type 1 diabetes (during the autoimmune 
destruction of pancreatic beta cells [47]), graft-versus-
host disease (when T-cells from a foreign donor graft 
attack antigens expressed by the recipient [48]), allograft 
rejection (when T-cells from the recipient directly or 
indirectly attack antigens from transplanted tissue from 
a genetically non-identical human donor [49]), viral myo-
carditis (when viral antigens are presented to T-cells fol-
lowing an infection of cardiac myocytes [50]), and the 
induction of inflammatory cytokine production (several 
cytokines are members of the PSMD4 targets pathway 
[51, 52]).

The type I diabetes pathway association was repli-
cated in independent cohorts and is biologically plausi-
ble. Insulin deficiency may reduce VDM performance 
through altered cerebral glucose metabolism, neuro-
transmitter expression/activity, neurotrophins, long-term 
potentiation, or inflammatory responses [47]. Increas-
ing plasma insulin levels intravenously while preserving 
euglycemia aids VDM (story and word list recall) in both 
healthy adults and AD patients [47]. Similarly, acute and 
chronic intranasal insulin administration improved ver-
bal memory in AD patients and healthy young adults, 
respectively [47]. In general, adults with type I diabetes 
perform worse on memory tests than non-diabetics [53]. 
AD patients (who often exhibit reduced VDM perfor-
mance) have decreased hippocampal glucose consump-
tion, hippocampal insulin receptor mRNA, and brain 
insulin receptor protein levels compared to age-matched 
controls [54, 55]. Gene expression studies also link diabe-
tes with the AD pathway [56].

Our pathway enrichment findings may reflect a sin-
gle pathway or MHC gene associations. The six VDM-
associated pathways shared eleven MHC genes and 
collectively harbored fifteen MHC genes exhibiting dif-
ferential expression by cognitive status in human and 
rodent brain tissues. MHC I proteins may be required for 
hippocampus-dependent memory [57]. An MHC II gene 
(HLA-DRB1) was associated with delayed verbal recall 
performance in older non-demented individuals [58] and 

AD [59], while hippocampal MHC II protein levels were 
inversely associated with mini-mental state examination 
scores [60]. Several MHC genes associated with VDM 
in this investigation (including the marginally replicated 
HLA-DRA) have been associated with AD (HLA-A, HLA-
B, HLA-DRA [61–63]) or showed increased hippocampal 
(HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DRA [60]) 
or pre-frontal cortex (HLA-A, HLA-C, HLA-E, HLA-F, 
HLA-G, HLA-DPB1 [60]) expression in mild AD demen-
tia cases compared to non-demented controls. MHC 
genes may influence memory through their effects on 
synaptic plasticity, development, morphology, and func-
tion [57, 64–66].

This investigation had a few limitations, including the 
lack of stringent replication for the multi-omics and 
pathway analyses. The replication cohorts were mainly 
restricted to women with some college education and 
had different PAR-dr and WL-dr assessments compared 
to the discovery cohorts. Each cohort-specific GWAS 
used HapMap II CEU-imputed data, which has a sparser 
gene coverage than 1000 Genomes-imputed or whole 
genome/exome sequence data. Therefore, the findings 
may be less accurate due to the omission of rare genetic 
variation of large effect. The original cohort-specific 
findings assumed additive genetic effects, thus we possi-
bly missed genes and pathways containing dominant or 
recessive variant effects.

In this research, we investigated the relationship 
between VDM-associated variants and eQTLs and 
meQTLs. Specifically, we leveraged logistic regression to 
evaluate the linear association between the negative loga-
rithm of p-values and the logarithm of odds that variants 
are in high LD with eQTLs and meQTLs. However, one 
limitation is that our research cannot definitively estab-
lish whether the same variant is causally linked to VDM 
and the regulation of eQTLs and meQTLs. Therefore, it 
is worthwhile to explore the identification of VDM vari-
ants that may be responsible for both the GWAS signals 
and regulatory effects by employing techniques such as 
colocalization and fine-mapping approaches [67, 68]. 
Additionally, we selected a threshold of r2 = 0.8 to deter-
mine if a genetic variant is in high LD with eQTLs and 
meQTLs. However, selection using a different thresh-
old may impact the findings, thus incorporating more 
sophisticated methods such as LD scoring may enhance 
the robustness of our tests.

Our study may also be hindered by different gene asso-
ciation measures, selection of gene boundaries for SNP 
mapping, the incompleteness of omics databases, and 
annotation biases [5]. Lastly, this investigation included 
participants of European ancestry, thus findings may not 
generalize to other racial or ethnic groups.
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Conclusions
In conclusion, our results add to the mounting evidence 
implicating expression regulation, immunity, and insulin 
deficiency in memory impairment. Future studies should 
attempt to dissect the molecular mechanisms underly-
ing these relationships, so treatments can be developed 
to combat the increasing burden of cognitive decline and 
AD on society.
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