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Abstract 

Background Neurodegeneration and structural changes in the brain due to amyloid deposition have been observed 
even in individuals with mild cognitive impairment (MCI). EEG measurement is considered an effective tool because it 
is noninvasive, has few restrictions on the measurement environment, and is simple and easy to use. In this study, we 
investigated the neurophysiological characteristics of community-dwelling older adults with MCI using EEG.

Methods Demographic characteristics, cognitive function, physical function, resting-state MRI and electroencepha-
logram (rs-EEG), event-related potentials (ERPs) during Simon tasks, and task proportion of correct responses and reac-
tion times (RTs) were obtained from 402 healthy controls (HC) and 47 MCI participants. We introduced exact low-
resolution brain electromagnetic tomography-independent component analysis (eLORETA-ICA) to assess the rs-EEG 
network in community-dwelling older adults with MCI.

Results A lower proportion of correct responses to the Simon task and slower RTs were observed in the MCI group 
(p < 0.01). Despite no difference in brain volume between the HC and MCI groups, significant decreases in dorsal 
attention network (DAN) activity (p < 0.05) and N2 amplitude of ERP (p < 0.001) were observed in the MCI group. 
Moreover, DAN activity demonstrated a correlation with education (Rs = 0.32, p = 0.027), global cognitive function 
(Rs = 0.32, p = 0.030), and processing speed (Rs = 0.37, p = 0.010) in the MCI group. The discrimination accuracy for MCI 
with the addition of the eLORETA-ICA network ranged from 0.7817 to 0.7929, and the area under the curve ranged 
from 0.8492 to 0.8495.

Conclusions The eLORETA-ICA approach of rs-EEG using noninvasive and relatively inexpensive EEG demonstrates 
specific changes in elders with MCI. It may provide a simple and valid assessment method with few restrictions 
on the measurement environment and may be useful for early detection of MCI in community-dwelling older adults.
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Background
Mild cognitive impairment (MCI) is characterized by 
cognitive dysfunction that does not significantly interfere 
with independent living and may be a transitional stage 
between normal cognitive aging and Alzheimer’s disease 
(AD) [1, 2]. It has been reported that as AD progresses 
in individuals with MCI, a gradual decline in cogni-
tive function spreads to other domains [3]. A systematic 
meta-analysis of the literature reporting brain structural 
changes associated with MCI found a 2.2-fold decrease 
in volume in the hippocampus, 1.8-fold in the whole 
brain, and 1.5-fold in the entorhinal cortex in individuals 
with MCI [4]. AD is a neurodegenerative disorder char-
acterized by the deposition of amyloid and tau proteins 
[5]. The accumulation of amyloid and tau may precede 
the onset of cognitive symptoms by several years and is 
thought to gradually lead to changes in brain structure 
and the onset of clinical manifestations [5, 6]. It has been 
shown that amyloid beta (Aβ) abnormalities temporally 
precede brain structural changes in older adults with 
MCI [7, 8]. The incidence of dementia in persons with 
MCI is estimated to be 5–15% per year [5, 9]. It is impor-
tant to characterize the state of neural activity in the 
brain during the period before structural brain changes 
are observed in patients with MCI. Previous studies using 
resting-state functional magnetic resonance imaging (rs-
fMRI) to evaluate regional brain interactions have found 
differences in functional connectivity between healthy 
controls (HC) and patients with MCI [10, 11].

Research on MCI is also being conducted using elec-
troencephalography (EEG), which is non-invasive and 
relatively inexpensive and allows for measurements with 
minimal spatial constraints. Studies using EEG often 
focus on measuring event-related potentials (ERPs), 
taking advantage of the temporal resolution, which is a 
prominent feature of brain waves [12]. ERPs consist of 
different components, including positive and negative 
components, which occur over time after stimulus onset, 
and each has a different meaning [13, 14]. Among these, 
the N2 component, which has a negative peak around 
200 ms after stimulus presentation, is thought to reflect 
discrepancies in cognitive control processes and infor-
mation processing [15, 16], whereas the P3 component, 
which has a positive peak after 300 ms, is associated with 
error detection and information processing for forecasts 
[17, 18]. In the Simon task, participants respond to the 
symbolic features of the stimulus (e.g., shape or color) 
using either their left or right hand. Because the stimulus 
is presented on the left or right side, the stimulus location 
may or may not be spatially congruent with the target’s 
responding hand [19]. Thus, the Simon task can measure 
visuospatial processing and execution (response-related) 
processes of lateralized stimuli. Performance is typically 

facilitated by congruent stimulus locations and inhibited 
by incongruent stimulus locations [20]. Therefore, the N2 
and P3 components have been extensively investigated in 
previous studies on MCI using the Simon task [21, 22], 
which is a choice reaction task [20, 23]. Source estima-
tion software has been developed to overcome the spatial 
resolution limitations of EEG [24, 25]. With the advance-
ment of this technology, EEG can now capture connec-
tivity between distant regions similar to fMRI [26, 27]. 
In resting-state EEG (rs-EEG) connectivity analysis, in 
addition to frequency-specific analysis, cross-frequency 
network analysis, such as exact low-resolution brain elec-
tromagnetic tomography-independent component analy-
sis (eLORETA-ICA), has become possible, and reports 
have begun to emerge on healthy adults [28], patients 
with dementia with Lewy bodies [29], and individuals 
with MCI have begun to emerge [30, 31].

The growing awareness of brain health and AD in the 
general population is leading to an increase in the num-
ber of cognitively impaired individuals who are con-
cerned that they have reduced cognitive function and 
who are seeking help from the medical system [32]. 
However, medical attention may be delayed in older 
adults because they do not perceive significant changes 
in their daily functioning or quality of life [33], consider 
their impairment to be due to normal aging rather than 
pathological brain dysfunction [34], and are less likely 
to compare their cognitive abilities with those of others. 
Therefore, older adults with MCI in the community may 
include those with delayed detection of cognitive decline 
and progression. Further, it is not easy for community-
dwelling individuals with MCI to undergo 18F-florbeta-
pir PET imaging, measurement of Aβ in cerebrospinal 
fluid, and MRI at medical facilities. Therefore, EEG may 
contribute to the early detection of MCI in community-
dwelling individuals with possible MCI. This may validate 
the underlying AD-related brain changes in patients with 
MCI instead of using more expensive PET scans.

In this study, we performed EEG measurements at rest 
and during cognitive tasks in community-dwelling older 
adults, both healthy and with MCI to capture the neuro-
physiological changes associated with MCI. We used the 
recently developed eLORETA-ICA analysis, which allows 
network analysis across frequencies, in addition to ERP 
analysis and brain volume measurements using MRI. In 
addition, we comprehensively collected data by conduct-
ing interviews regarding medical history, physical func-
tion examinations, cognitive function assessments, and 
measurement of behavioral indicators during cognitive 
tasks. It has been suggested that differences in the effi-
ciency and capacity of brain networks may explain indi-
vidual differences in cognitive performance as well as 
individual differences in the ability to cope with brain 
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changes. This concept of individual brain characteristics 
is referred to as the cognitive reserve (CR) [35]. Studies 
comparing HC and MCI have shown differences in brain 
volume in longitudinal MRI studies [4], differences in 
eLORETA-ICA in rs-EEG [30], and differences in ERP 
[21]. We hypothesized that when comparing adults with 
MCI and HC living independently in the community, 
they would not show differences in brain volume, but 
those with MCI would show cognitive impairments and 
differences in the network of rs-EEG and ERP during 
cognitive tasks. Confirming this hypothesis would fur-
ther support the efficacy of EEG for the early detection of 
MCI and functional assessment in community-dwelling 
older adults at a potential risk of developing AD.

Methods
Participants
A total of 449 participants (249 female, median age 73, 
interquartile range [IQR] 69–78) were recruited from an 
ongoing study of the National Center for Geriatrics and 
Gerontology-Study of Geriatric Syndromes (NCGG-
SGS) [36] on health promotion for older adults in the 
Aichi prefecture in Japan. The NCGG-SGS is a cohort 
study aimed at establishing a screening system for geri-
atric syndromes and validating evidence-based interven-
tions to prevent them. The study protocol was approved 
by the ethics committee of the National Center for Geri-
atrics and Gerontology (Approval Number: 1440–5). This 
study was conducted in accordance with the principles 
of the Declaration of Helsinki. All participants provided 
written informed consent prior to inclusion. Participants 
were recruited from the “Self-Management Activity Pro-
gram for the Older” study, which examines the effects of 
behavioral modification techniques on the prevention of 
dementia among community-dwelling older adults using 
a smartphone as a behavior change tool [37].

The health check procedure included a detailed evalu-
ation by a nurse to exclude individuals with significant 
or unstable medical conditions, as well as those with a 
significant neurological history (such as epilepsy, brain 
tumors, or stroke). We used the Edinburgh Handed-
ness Inventory (EHI) score to categorize right- and left-
handed dominance. In addition, participants’ cognitive 
function was evaluated using the Mini-Mental State 
Examination (MMSE) [38] and the NCGG-Functional 
Assessment Tool (NCGG-FAT) [39–41], which com-
prises four domains: (1) memory (word list memory 
I [immediate recognition] and word list memory II 
[delayed recall]); (2) attention (a tablet version of Trail 
Making Test Part A: TMT-A); (3) executive function 
(a tablet version of Trail Making Test Part B: TMT-B); 
and (4) processing speed (a tablet version of the sym-
bol digit substitution test: SDST). Participants included 

402 cognitively intact participants (229 female; median 
age, 73 years; IQR 70–78 years) and 47 participants with 
documented MCI (20 female; median age, 73 years; IQR, 
69–78 years). None of the participants received medica-
tions for MCI at a medical facility. The nurse confirmed 
during the face-to-face interview that the participant was 
not taking any medication for MCI. However, the MCI 
participants were taking medications for other condi-
tions (heart disease, diabetes, hypertension, and hyper-
lipidemia). We found no significant difference in the 
number of medications taken between HC and MCI par-
ticipants. We did not restrict medications for other con-
ditions prior to EEG measurement for risk management 
purposes.

Demographic characteristics are presented in Table 1.

Defining MCI
We followed a methodology similar to that of a previous 
study in which clinical, neuropsychological, and labora-
tory data were reviewed by neurologists to identify par-
ticipants with MCI [1]. MCI was defined as cognitive 
impairment with a cognitive test score of 1.5 standard 
deviations or more below the mean in any cognitive 
domain, while functionally independent in activities of 
daily living (ADL). We used the MMSE to measure global 
cognitive function, with a score of < 24 indicating impair-
ment [42]. The NCGG-FAT was used to assess specific 
cognitive functions including memory, attention, execu-
tive function, and processing speed. All tests have estab-
lished standardized thresholds for defining the objective 
cognitive impairments in the corresponding domains (a 
score of ≥ 1.5 standard deviations below those age- and 
education-specific means, based on our own algorithm 
sourced from a database, including over 10,000 commu-
nity-dwelling older adults), which were derived from a 
population-based cohort [43]. Participants whose cogni-
tive test scores were > 1.5 standard deviations below the 
mean in all domains were classified as HC [41, 44, 45].

Simon task procedure
We investigated error processing during the Simon 
task, which is a choice reaction task that generates 
errors using incongruent spatial and color cues [20, 
23]. Building on previous electrophysiological research 
[46], we used a modified version of the Simon task 
that produces a high frequency of errors. In this task, 
participants were presented with a colored cue to the 
left or right of a fixation cross (Fig.  1). The cue color 
determines the response direction, with blue indicating 
a right-handed response, red indicating a left-handed 
response, and yellow indicating no response. The spa-
tial location and cue direction were either congruent 
or incongruent, with a prepotent response requiring 



Page 4 of 17Katayama et al. Alzheimer’s Research & Therapy          (2023) 15:217 

inhibition in the incongruent condition (i.e., respond-
ing in the direction of the spatial location of the cue 
rather than the direction indicated by the color). Errors 
occurred when the participant’s response direction was 
inconsistent with the cue color. To increase the number 
of errors, the participants were encouraged to complete 
the task quickly. A total of 150 trials were randomly 
presented to each participant, with each condition (i.e., 
congruent, incongruent, and no response) consisting 
of 50 trials. All participants performed 24 trials (eight 
in each of the three conditions) for training before 
scanning. The proportions of correct responses and 

reaction times (RTs) were calculated separately for the 
congruent, incongruent, and no-response conditions. 
The intertrial interval was 1500 ms [47].

Participants responded by pressing the left or right 
button, depending on the color of the circle, while 
ignoring the position of the stimulus (left/right). Three 
conditions could occur: congruent, when the color and 
position of the circle led to the same response; incon-
gruent, when the color and position did not lead to the 
same response; and no response, when the yellow circle 
was the color and no button should be pressed regard-
less of the position.

Table 1 Demographic characteristics

HC healthy condition, MCI mild cognitive impairment, IQR interquartile range, EHI Edinburgh Handedness Inventory, GDS 15-item Geriatric Depression Scale, MMSE 
Mini-Mental State Examination, TMT Trail Making Test, SDST Symbol Digit Substitution Test, eTIV estimated total intracranial volume
a Wilcoxon rank sum test

Total HC MCI p value
n = 449 n = 402 n = 47

Variable
 Age, year (IQR) 73 (69–78) 73 (70–78) 73 (69–78) 0.915

 Sex, woman (%) 249 (55.5) 229 (57.0) 20 (42.6) 0.084

 EHI total, score (IQR) 100 (100–100) 100 (100–100) 100 (100–100) 0.843

 Handedness, right (%) 436 (97.1) 390 (97.0) 46 (97.9) 1.000

 Education, year (IQR) 12 (12–16) 12 (12–16) 12 (12–14) 0.492

 Heart disease, yes (%) 57 (12.7) 48 (11.9) 9 (19.1) 0.241

 Diabetes, yes (%) 64 (14.3) 61 (15.2) 3 (6.4) 0.158

 Hypertension, yes (%) 170 (37.9) 156 (38.8) 14 (29.8) 0.295

 Hyperlipidemia, yes (%) 157 (35.0) 146 (36.3) 11 (23.4) 0.111

 Medication, n (IQR) 2 (1–4) 2 (1–4) 2 (1–4) 0.851

 Grip strength, kg (IQR) 26.1 (21.7–32.9) 26.1 (21.7–32.9) 25.6 (21.4–31.9) 0.786

 Walking speed, m/sec (IQR) 1.24 (1.12–1.36) 1.25 (1.12–1.37) 1.19 (1.07–1.29) 0.079

 GDS, score (IQR) 2 (1–4) 2 (1–3) 2 (1–4) 0.642

 Living alone, yes (%) 76 (16.9) 64 (15.9) 12 (25.5) 0.145

 Work, yes (%) 101 (22.5) 88 (21.9) 13 (27.7) 0.477

Cognitive function
 MMSE, score (IQR) 29 (27–30) 29 (27–30) 28 (26–29) 0.002a

 Word list memory, composite 
score (IQR)

12.3 (9.67–14.3) 12. 7 (10.3–14.3) 7. 7 (6.5–11.7)  < 0.001a

 TMT–A, seconds (IQR) 18 (16–21) 18 (16–20) 22 (19.5–28.5)  < 0.001a

 TMT–B, seconds (IQR) 31 (25–39) 31 (25–38) 39 (31.5–57)  < 0.001a

 SDST, score (IQR) 49 (44–55) 50 (45–55) 43 (35.5–48)  < 0.001a

Brain volume
 Right Hippocampus,  mm3 (IQR) 3916.3 (3619.4–4189.9) 3915.3 (3622.7–4194.5) 3917.5 (3596.4–4179.8) 0.896

 Left Hippocampus,  mm3 (IQR) 3745.5 (3477.2–3998.8) 3743.4 (3470. 7–3993.3) 3780.8 (3545.5–4097.4) 0.575

 Cerebral White Matter,  mm3 
(IQR)

410,081.0 (380,472.0–439,302.0) 410,414.0 (379,324.8–439,100.8) 407,836.0 (387,099.0–440,727.5) 0.656

 Sub Cortical Gray Matter,  mm3 
(IQR)

51,097.0 (48,069.0–54,025.0) 51,040.5 (48,046.8–53,942.8) 51,599.0 (48,304.5–54,399.0) 0.312

 Total Gray Matter,  mm3 (IQR) 562,343.6 (533,467.7–596,639.3) 560,918.7 (532,063.8–595,307.1) 575,054.9 (551,714.0–599,438.8) 0.107

 eTIV,  mm3 (IQR) 1,357,196.5 (1,264,368.5–
1,463,975.8)

1,356,346.3 (1,264,522.8–
1,459,575.0)

1,357,982.6 (1,273,443.8–
1,530,433.9)

0.326
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rs‑MRI acquisition and image processing and analysis
The rs-MRI was performed using a 3-T Siemens MAG-
NETOM Trio Tim 3  T scanner (Siemens Medical 
Solutions, Erlangen, Germany) with 12 channel head 
coils. A whole brain three-dimensional T1-weighted 
magnetization prepared rapid acquisition gradi-
ent echo sequence was acquired in the sagittal plane: 
repetition time = 1800  ms, echo time = 1.99  ms, flip 
angle = 9°, slices = 160, slice thickness = 1.1  mm, 
voxel = 1.0 × 1.0 × 1.1 mm, image matrix = 256 × 256 mm, 
field of view = 250 mm. Each scan took 4:06 min.

We used FreeSurfer version 7 (http:// surfer. nmr. mgh. 
harva rd. edu) on a Linux server (Ubuntu version 20.04) 
for image processing [48]. The automated processing 
stream includes the removal of non-brain tissue [49], 
Talairach transformation, gray/white matter tissue seg-
mentation [50], intensity normalization, topological 
correction of the cortical surface [51], and surface defor-
mation to optimize the placement of tissue borders [52]. 
We calculated brain volumetric measurements  (mm3) 
for the right and left hippocampi, cerebral white matter 
(CWM), subcortical gray matter (SGM), and total gray 
matter (TGM).

rs‑EEG recording and analysis
The participants underwent EEG recordings in a resting 
state with their eyes closed for 5  min. The participants 
were instructed to keep their eyes closed but stay awake 

during the recordings. Spontaneous cortical electrical 
activity was recorded using a high-standard mobile dry-
based 19-channel EEG-system (CGX Quick-20r; Cogn-
ionics Inc.) and sampled at 500  Hz. EEG was recorded 
with the electrodes positioned according to the Interna-
tional 10–20 system (i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, 
O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz) using an 
ear reference. Electrode impedances were kept below 10 
kΩ. Bandpass filtering from 0.53 to 120 Hz and a 60-Hz 
notch filter were performed using Brain Vision Analyzer 
software 2.2 (Brain Products, Munich, Germany).

We investigated the EEG data using eLORETA, which 
is an open-source academic software available at http:// 
www. uzh. ch/ keyin st/ loreta. htm [53]. The eLORETA 
method can estimate cortical electrical distributions from 
scalp electrical potentials measured at each electrode site 
and precisely localize any point source in the brain using 
unique weights in a weighted minimum-norm inverse 
solution. Although arbitrary distributions can be cor-
rectly localized with low spatial resolution according to 
the principles of linearity and superposition, the current 
version of eLORETA includes 6239 cortical gray mat-
ter voxels at a 5-mm spatial resolution in a realistic head 
model [54], and the lead field was computed using ana-
tomic labels corresponding to Brodmann areas. Specific 
activity is observed in rs-EEG activity in MCI [55–57]. 
Therefore, we used the same frequency bands of inter-
est (delta [2–4 Hz], theta [4–8 Hz], alpha [8–13 Hz], beta 

Fig. 1 Overview of the Simon task

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
http://www.uzh.ch/keyinst/loreta.htm
http://www.uzh.ch/keyinst/loreta.htm
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[13–30 Hz], and gamma [30–60 Hz]) which were set to 
the same frequency bands as in previous studies compar-
ing healthy older adults, MCI, and AD using eLORETA-
ICA [31]. Neural activity was calculated using global field 
power values [25].

To identify maximally spatially independent spectral 
components, we performed eLORETA-ICA on the eLO-
RETA localization images using the method described by 
Aoki et al. [28, 29, 31], which is available in the eLORETA 
software. The eLORETA-ICA method can decompose 
non-Gaussian cortical electrical activity into independ-
ent components (ICs) in different frequency bands and is 
superior to other decomposition methods, such as prin-
cipal component analysis or correlation analysis, using 
EEG data [58–60]. Moreover, eLORETA-ICA can use 
all frequency information from EEG data [28–31]. The 
technical details of eLORETA-ICA can be found in Pas-
cual-Marqui et al. [53]. The mean localization image was 
initially calculated for each frequency band of each par-
ticipant using the data, which were then concatenated.

ICA is a mathematical method that decomposes a mix-
ture of signals, such as EEG and fMRI data, into ICs con-
sisting of physiological and artifact signals. ICA offers 
precise decomposition of non-Gaussian data, such as 
cortical electrical activity, compared with other analysis 
methods [59]. To identify a set of maximally independ-
ent components in eLORETA spectrocortical electri-
cal activity across a population, group ICA was applied 
using the eLORETA-ICA software [61]. The data matrix 
consisted of participants × (concatenated frequency 
bands and spaces [cortical voxels]). Specifically, the 
eLORETA-derived 5-frequency (delta, theta, alpha, beta, 
and gamma) source images from each participant were 
expressed in a voxel-by-frequency matrix format or 
Nv × Nf, where Nv = the total number of voxels given by 
eLORETA = 6239 and Nf = 5. ICA was applied to this data 
matrix to identify the maximally independent spectro-
cortical components [62, 63]. The ICs were then ordered 
based on total power and color-coded for each frequency 
band. In the color-coded map, red and blue represent the 
increases and decreases in power, respectively, with an 
increase in IC activity. It is important to note that ICA 
consists of two parts: the spectrocortical networks that 
are common to all participants and the set of “loadings” 
(i.e., network activities) that are specific to each partici-
pant. For a given participant, the loadings (i.e., network 
activities) quantified the contribution of each network to 
its actual spectrocortical activity. Furthermore, once the 
spectrocortical networks common across a large sample 
are available, they can be applied to any new participant’s 
activity, thus producing loadings (i.e., network activi-
ties) for the new participant [29]. To measure whether 
the activity level in any of our identified ICs significantly 

differed between the HC and MCI groups, the primary 
outcome variables were the loading values for each IC 
output using the ICA algorithm. In this way, the 15 rest-
ing-state networks were used to determine the “loadings” 
(i.e., network activities) for the HC and MCI groups.

ERP recording and analysis
ERPs were recorded using a high-standard mobile dry-
based 19-channel EEG-system (CGX Quick-20r, Cogn-
ionics Inc.) and sampled at 500  Hz. EEG was recorded 
with the electrodes positioned according to the Inter-
national 10–20 system (i.e., Fp1, Fp2, F3, F4, C3, C4, P3, 
P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, and Pz) using 
an ear reference. Electrode impedances were kept below 
10 kΩ. Subsequent processing was performed using 
the Brain Vision Analyzer software 2.2 (Brain Products, 
Munich, Germany). First, a bandpass filter ranging from 
0.1 to 30 Hz and a 60-Hz notch filter were applied to the 
data. Raw data was inspected to eliminate technical arti-
facts, and periodically occurring artifacts, such as pulse 
artifacts and horizontal and vertical eye movements, 
were subsequently detected and corrected by ICA using 
the infomax algorithm. Following these corrections, cue-
locked segments were formed for each condition. These 
segments began 200  ms prior to the locking point (cue 
onset was set to time point 0) and ended 700 ms thereaf-
ter, resulting in an overall segment length of 900 ms. An 
automated artifact rejection procedure was then imple-
mented using the rejection criteria of a maximal value 
difference above 200 μV in a 200-ms interval or an activ-
ity below 0.5 μV in a 100-ms period. Next, a baseline cor-
rection was set to a time interval ranging from − 200 to 
0  ms before averaging the segments for each condition. 
The same rejection criteria were used for all participants 
to perform the automatic artifact removal procedure. 
Next, a baseline correction was set to a time interval 
ranging from − 200 to 0  ms before averaging the seg-
ments for each condition. The three conditions were con-
gruent, incongruent, and no response. For N2 and P3, the 
local maxima were quantified semi-automatically in time 
windows of 151–230  ms and 300–600  ms, respectively 
[22, 64], at electrodes Fz, Cz, and Pz, as indicated by the 
grand average data. The peak latency (ms) of N2 and P3 
and the amplitude (μV) at that time were then calculated 
for each channel. The mean number of epochs removed 
under each condition was congruent = 18.7, standard 
deviation (SD) = 1.9; incongruent = 17.2, SD = 1.7; and no 
response = 17.0, SD = 1.7.

Statistics
The Shapiro–Wilk test revealed that many of the 
variables were not normally distributed. Therefore, 
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Bonferroni correction for the Wilcoxon rank-sum test 
(Wilcoxon test) was used to detect the characteris-
tics that differed between the HC and MCI groups. 
Categorical variables were compared using Pearson’s 
chi-squared test. We used the EHI score to catego-
rize right- and left-handed dominance and compared 
the RTs for the Simon task using the Wilcoxon test. 
Spearman’s rank correlation coefficients were used to 
determine the correlations and significant differences 
between the demographic characteristics, cognitive 
tests, behavioral data, and eLORETA-ICA network 
activities for all participants, the HC group, and the 
MCI group. After observing significant differences 
in the values of the eLORETA-ICA network activities 
between the HC and MCI groups, model creation and 
validation were conducted to discriminate MCI. First, 
random oversampling was used to correct for imbal-
ances between the HC and MCI groups. Next, each 
eLORETA-ICA network activity that was significantly 
different between the HC and MCI groups was con-
verted to a z-score, which was weighted using cluster 
analysis as a multivariate analysis. The composite score 
of eLORETA-ICA network activity was then calculated 
from the weighted z-score. Finally, various performance 
measurements are used to verify the performance of the 
models. We measured the performance of each model 
based on the accuracy, sensitivity, specificity, precision, 
F1 Score, and area under the receiver operating char-
acteristic curve (AUC). The imbalance between the HC 
and MCI groups was addressed using the R package 
“Random Over-Sampling Examples (ROSE)” (version 
0.0.4) [65], a bootstrap-based method that combines 
over- and undersampling to address sample size imbal-
ances [66]. The combination of over- and undersam-
pling using ROSE has been shown to significantly 
improve model accuracy [65]. Support vector machine 
(SVM) and logistic regression analyses were performed 
using the “caret” package (version 6.0.94) executable 
in R version 4.2.2 (R Foundation for Statistical Com-
puting, Vienna, Austria), and Monte Carlo fivefold 
cross-validation was applied to obtain the model that 
identified MCI with the highest accuracy. The number 
of Monte Carlo fivefold cross-validation iterations was 
set to 100. Model 1 was a cognitive function test; Model 
2 was the eLORETA-ICA network activities composite 
score; Model 3 was a combination of Models 1 and 2; 
Model 4 was a combination of Model 3 and confound-
ing factors; Model 5 was a combination of Model 1, 
confounding factors, and MRI data; and Model 6 was 
a combination of all the factors. The significance level 
was set at p < 0.05. All analyses were performed using R 

version 4.2.2 (R Foundation for Statistical Computing, 
Vienna, Austria).

Results
There were no significant differences in demographic 
characteristics or brain volumes between the groups; only 
cognitive function was significantly lower in the MCI 
group (p < 0.005 after Bonferroni correction) (Table 1).

Behavior on the Simon task
All participants were included in behavioral analyses 
(n = 449). The descriptive results of the behavioral data 
are shown in Fig. 2.

The median (IQR) proportions of correct responses in 
the congruent, incongruent, and no response conditions 
were 98% (96–100), 98% (94–100), and 100% (98–100), 
respectively, in the HC group, and 98% (96–100), 96% 
(93–98), and 100% (98–100), respectively, in the MCI 
group. Wilcoxon tests showed a significantly lower pro-
portion of correct responses to the incongruent condition 
in the MCI group than in the HC group (p < 0.001). We 
compared the RTs for right- and left-handedness accord-
ing to EHI scores and found no significant differences 
(p > 0.05). The median (IQR) RTs in the congruent and 
incongruent conditions were 0.574 ms (0.521–0.624) and 
0.615  ms (0.537–0.703) in the HC group and 0.602  ms 
(0.549–0.656) and 0.653  ms (0.587–0.715) in the MCI 
group, respectively. Wilcoxon tests showed significantly 
slower RTs in the MCI group than in the HC group in 
both conditions (p < 0.01).

eLORETA‑ICA results
We applied eLORETA-ICA to rs-EEG data from 449 
participants and identified 15 independent components 
(ICs). Twelve of them (IC-2, IC-3, IC-5, IC-6, IC-7, IC-8, 
IC-9, IC-10, IC-11, IC-13, IC-14, and IC-15) corre-
sponded to physiological network activities, whereas the 
other three represented artifact activities (IC-1, IC-4, and 
IC-12) (Fig. 3). The results of eLORETA-ICA showed that 
out of the 12 rs-EEG networks, the MCI group showed 
decreased activity in the sensorimotor (SMN) (IC-2), 
memory perception (IC-5), posterior default mode 
(DMN) (IC-7), ventral attention (VAN) (IC-11), and 
dorsal attention (DAN) (IC-14) networks (Fig.  3). The 
mean ± standard deviation of the SMN, memory percep-
tion network, posterior DMN, VAN, and DAN, respec-
tively, was 2760.3 ± 808.3 μV2/M4/Hz, 1958.0 ± 654.2 μV2/
M4/Hz, 706.8 ± 994.7 μV2/M4/Hz, 696.1 ± 1191.8 μV2/
M4/Hz, and 2737.9 ± 752.2 μV2/M4/Hz in the HC group, 
and 2653.7 ± 918.4 μV2/M4/Hz, 1863.0 ± 578.7 μV2/M4/
Hz, 552.9 ± 1083.1 μV2/M4/Hz, 384.4 ± 1109.2 μV2/M4/
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Fig. 2 Descriptive statistics for behavioral data. A The proportion of correct responses in the Congruent condition. B The proportion of correct 
responses in the incongruent condition. C shows the proportion of correct responses in the no response condition. D The RT in the Congruent 
condition. E The RT in the incongruent condition. Each violin plot contains a boxplot. The black line within the box represents the median; the box 
in the center represents the interquartile range; the black dot depicts the remaining distribution, except for any data points identified as “outliers” 
(i.e., those more than 1.5 standard deviations above or below the median). HC, healthy controls; MCI, mild cognitive impairment. *p < 0.01; 
**p < 0.001; n.s. not significant

Fig. 3 Sample images of 15 independent components (ICs) in their specified frequency bands obtained by applying eLORETA-ICA to EEG data. 
Twelve ICs were identified as physiological network activities: IC-2, IC-3, IC-5, IC-6, IC-7, IC-8, IC-9, IC-10, IC-11, IC-13, IC-14, and IC-15 and 3 ICs 
as artifact activities: IC-1, IC-4, and IC-12. In the color-coded map, red and blue represent increase and decrease in power with increasing IC activity, 
respectively
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Hz, and 2638.6 ± 669.1 μV2/M4/Hz in the MCI group. The 
other results are shown in Additional file  1. The SMN 
consists of the bilateral superior parietal lobes, fron-
tal lobe δ activity, and bilateral superior parietal lobe α 
activity in an anticorrelated state. The use of this network 
was lower in the MCI group (t =  − 0.845, p < 0.05, one-
tailed test). The memory perception network consisted 
of bilateral occipital and right parietal lobe δ activity 
that was anticorrelated with the frontal lobes, θ activ-
ity in the parietal lobes and left temporoparietal junc-
tion, and α activity in the right temporal lobe. The use 
of this network was lower in the MCI group (t =  − 0.955, 
p < 0.05, one-tailed test). The posterior DMN consisted of 
bilateral precuneus and temporal theta activity, and the 
bilateral temporal θ activity was anticorrelated. The use 
of this network was lower in the MCI group (t =  − 0.996, 
p < 0.05, one-tailed test). The VAN consisted of γ activity 
in the right occipital to inferior parietal and frontal lobes 
and γ-anticorrelated activity in the right superior pari-
etal and left frontal lobes. The use of this network was 
lower in the MCI group (t =  − 1.712, p < 0.05, one-tailed 
test). The DAN consisted of bilateral β and γ activity in 
the bilateral superior parietal lobes and anticorrelated β 
activity in the right temporoparietal junction. The use of 
this network was lower in the MCI group (T =  − 0.868, 
p < 0.05, one-tailed test) (Table 2).

ERP results
Tables 3 and 4 show the grand average of the latency and 
amplitude of the ERP waveforms at N2 and P3 for the 
HC and MCI groups at the Fz, Cz, and Pz electrodes in 
the congruent, incongruent, and no response conditions, 
respectively. The median (IQR) of N2 amplitude at the 
Cz electrode in the no response condition was − 10.3 μV 
(− 15.9 to − 6.72) in the HC group and − 6.67 μV (− 11.4 
to − 4.1) in the MCI group. Wilcoxon tests showed that 
the N2 amplitude was significantly smaller in the MCI 
group than in the HC group for the no response condi-
tion (p < 0.001).

Correlation analyses
The activities of the DAN (IC-14) which showed cor-
relations with demographic characteristics, cognitive 
functions, and behavioral data are shown in Fig. 4. Addi-
tional results are provided in Additional files 2, 3 and 
4. The coefficient (Rs) and P value (p) of the correlation 
between DAN and education were Rs = 0.12, p = 0.010 
in all participants, Rs = 0.10, p = 0.046 in the HC group, 
and Rs = 0.32, p = 0.027 in the MCI group. The Rs and p 
of the correlation between DAN, MMSE, and SDST were 
Rs = 0.04, p = 0.441, and Rs = 0.01, p = 0.790 in all partici-
pants; Rs = 0.0003, p = 0.995, and Rs =  − 0.03, p = 0.509 
in the HC group; and Rs = 0.32, p = 0.030 and Rs = 0.37, 
p = 0.010 in the MCI group. The Rs and p of the correla-
tion trend between the DAN and the TMT-A and the RTs 
in the congruent and incongruent conditions, respec-
tively, were Rs = 0.04, p = 0.441, Rs =  − 0.04, p = 0.457, 
and Rs =  − 0.03, p = 0.594 in all participants; Rs = 0.09, 
p = 0.061, Rs =  − 0.002, p = 0.960, and Rs = 0.01, p = 0.896 
in the HC group; and Rs =  − 0.27, p = 0.067, Rs =  − 0.27, 
p = 0.067, and Rs =  − 0.28, p = 0.056 in the MCI group.

Discriminating MCI by SVM and logistic analyses
Random oversampling corrected the imbalance in the 
numbers of participants in the HC and MCI groups 
from 402:47 to 234:215. eLORETA-ICA extracted five 
networks that showed significant differences between 
the HC and MCI groups: SMN (IC-2), memory percep-
tion network (IC-5), backward DMN (IC-7), VAN (IC-
11), and DAN (IC-14). A weighted composite score was 
calculated from the z-scores of these. The accuracies in 
models 1, 2, 3, 4, 5, and 6 were 0.7372, 0.5434, 0.7394, 
0.7817, 0.7751, and 0.7929, respectively, in the SVM 
analysis, and 0.7238, 0.6125, 0.7416, 0.7684, 0.7706, and 
0.7795, respectively, in the logistic regression analysis 
(Table 5). The sensitivities in models 1, 2, 3, 4, 5, and 6 
were 0.6605, 0.0465, 0.6465, 0.7209, 0.7070, and 0.7163 
in the SVM analysis and 0.6651, 0.3070, 0.6884, 0.7395, 
0.7395, and 0.7535 in the logistic regression analysis, 

Table 2 Mean rs-EEG network activities in HC and MCI group

HC healthy condition, MCI mild cognitive impairment, SMN sensorimotor network, DMN default mode network, VAN ventral attention network, DAN dorsal attention 
network, SD standard deviation
‡ t =  − 0.685, for p = 0.039

Variable Total HC MCI t value
n = 449 n = 402 n = 47

SMN, μV2/M4/Hz (mean ± SD) 2749.2 ± 820.1 2760.3 ± 808.3 2653.7 ± 918.4  − 0.845‡

Memory perception network, μV2/M4/Hz 
(mean ± SD)

1948.0 ± 646.8 1958.0 ± 654.2 1863.0 ± 578.7  − 0.955‡

Posterior DMN, μV2/M4/Hz (mean ± SD) 690.6 ± 1004.1 706.8 ± 994.7 552.9 ± 1083.1  − 0.996‡

VAN, μV2/M4/Hz (mean ± SD) 663.5 ± 1186.1 696.1 ± 1191.8 384.4 ± 1109.2  − 1.712‡

DAN, μV2/M4/Hz (mean ± SD) 2727.5 ± 743.9 2737.9 ± 752.2 2638.6 ± 669.1  − 0.868‡
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respectively (Table 5). The specificities in models 1, 2, 3, 
4, 5, and 6 were 0.8077, 1.0000, 0.8248, 0.8376, 0.8376, 
and 0.8632, respectively, in the SVM analysis, and 0.7778, 
0.8932, 0.7906, 0.7949, 0.7991, and 0.8034, respectively, 
in the logistic regression analysis (Table  5). The preci-
sions of models 1, 2, 3, 4, 5, and 6 were 0.7594, 1.0000, 
0.7722, 0.8031, 0.8000, and 0.8280, respectively, in the 
SVM analysis, and 0.7333, 0.7253, 0.7513, 0.7681, 0.7718, 
and 0.7788, respectively, in the logistic regression analy-
sis (Table 5). The F1 scores in models 1, 2, 3, 4, 5, and 6 
were 0.7065, 0.0889, 0.7038, 0.7598, 0.7506, and 0.7681, 
respectively, in the SVM analysis, and 0.6976, 0.4314, 
0.7184, 0.7536, 0.7553, and 0.7660, respectively, in the 
logistic regression analysis (Table  5). The AUC in mod-
els 1, 2, 3, 4, 5, and 6 were 0.8077, 0.5063, 0.7996, 0.8400, 
0.8424, and 0.8495, respectively, in the SVM analysis, 
and 0.7941, 0.5063, 0.7986, 0.8408, 0.8419, and 0.8492, 
respectively, in the logistic regression analysis (Table 5).

Discussion
Functional abnormalities in the resting brain network 
have been increasingly reported in patients with MCI 
[67, 68]. In the present study, MCI was associated with 
decreased activity of the DAN and decreased amplitude 
of the N2 component [22, 30, 69, 70]. These findings 

are consistent with those of previous studies that used 
rs-MRI, rs-EEG, and ERP. The reduced DAN activity 
observed in MCI may reflect the neural basis of degen-
erative top-down attentional deficits [71, 72], as observed 
in MCI individuals with altered functional anatomy with 
attenuation of prefrontal cortical activation govern-
ing segmental attention [73]. In addition, significantly 
reduced top-down co-selection has been reported in 
individuals with MCI, which is further exacerbated in 
individuals with AD [74]. The decreased amplitude of N2 
in MCI individuals is thought to be related to the reduced 
function of the temporal and parieto-occipital lobes that 
produce the N2 component, suggesting that the alloca-
tion of attentional resources to target stimuli is reduced 
in MCI individuals [70]. Despite the absence of differ-
ences in brain volume between the HC and MCI groups, 
clear differences in DAN activity and N2 amplitude 
were observed, suggesting that EEG measurements have 
potential as neurophysiological markers for detecting 
preclinical stages of AD in older adults. Moreover, DAN 
activity correlated with education and cognitive func-
tion in patients with MCI. Previous studies indicated that 
the DAN exhibits an earlier decline in functional con-
nectivity than the VAN [10]. These findings further sup-
port the efficacy of EEG for the early detection of MCI 

Table 3 The latency of the ERP waveforms at N2 and P3

HC healthy condition, MCI mild cognitive impairment, IQR interquartile range, ch. channel, ms millisecond

Variable Total HC MCI p value
n = 449 n = 402 n = 47

Congruent condition
 N2, ch. Fz—latency, ms (IQR) 188 (168–214) 188 (168–214) 188 (171–216) 0.927

 N2, ch. Cz—latency, ms (IQR) 200 (178–218) 200 (178–218) 200 (172–218) 0.514

 N2, ch. Pz—latency, ms (IQR) 200 (180–216) 200 (180–216) 200 (179–214) 0.745

 P3, ch. Fz—latency, ms (IQR) 424 (385–490) 424 (386–490) 430 (370–484) 0.707

 P3, ch. Cz—latency, ms (IQR) 428 (388–482) 428 (388–480) 450 (366–502) 0.531

 P3, ch. Pz—latency, ms (IQR) 420 (374–471) 420 (377–470) 438 (364–502) 0.497

Incongruent condition
 N2, ch. Fz—latency, ms (IQR) 186 (164–210) 184 (164–208) 200 (177–217) 0.011

 N2, ch. Cz—latency, ms (IQR) 198 (176–216) 198 (176–216) 196 (175–216) 0.838

 N2, ch. Pz—latency, ms (IQR) 198 (178–214) 198 (178–214) 202 (181–215) 0.501

 P3, ch. Fz—latency, ms (IQR) 442 (394–496) 440 (392–496) 462 (406–500) 0.389

 P3, ch. Cz—latency, ms (IQR) 454 (394–512) 454 (396–514) 450 (380–509) 0.467

 P3, ch. Pz—latency, ms (IQR) 436 (368–512) 438 (369–516) 422 (360–481) 0.182

No response condition
 N2, ch. Fz—latency, ms (IQR) 192 (170–214) 192 (168–214) 196 (183–220) 0.047

 N2, ch. Cz—latency, ms (IQR) 196 (176–216) 198 (176–214) 190 (174–220) 0.963

 N2, ch. Pz—latency, ms (IQR) 194 (176–210) 194 (176–210) 194 (174–212) 0.938

 P3, ch. Fz—latency, ms (IQR) 506 (430–568) 506 (429–566) 524 (466–577) 0.112

 P3, ch. Cz—latency, ms (IQR) 506 (440–564) 510 (440–564) 496 (423–557) 0.231

 P3, ch. Pz—latency, ms (IQR) 466 (384–540) 464 (387–536) 476 (351–555) 0.912
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and functional assessment in community-dwelling older 
adults at potential risk for developing AD.

Simon task and rs‑MRI
The present results are consistent with previous studies 
that reported a reduced proportion of correct responses 
to Simon tasks and delayed RTs in individuals with MCI 
[75, 76]. In this study, no significant differences were 
found in the bilateral hippocampus, CWM, SGM, or 
TGM between the HC and MCI groups. Given that pre-
vious studies have presented the results of systematic 
reviews of longitudinal studies examining changes in 
brain structure related to MCI [4], it is possible that the 
participants in this study were in the early stages of MCI 
before the brain volume changes began.

eLORETA‑ICA networks
Compared with the HC group, the MCI group showed 
decreased activity in the SMN, memory perception net-
work, posterior DMN, VAN, and DAN. As a model of 
graded network degeneration, it is proposed that changes 
occur in the order of DMN, attention network, and 
SMN during the transition from preclinical to prodro-
mal AD and AD dementia [77]. In this study, significant 

differences were found between the HC and MCI groups 
in the posterior DMN, which is thought to undergo 
changes earlier than in preclinical AD. The DAN, VAN, 
and SMN activities, which are also thought to change 
after preclinical AD, may have been significantly lower in 
the MCI group. In a study examining the HC and MCI 
networks using eLORETA-ICA, significant differences 
were found between the two groups in attention net-
works [30]. Our study obtained similar results, but the 
education, MMSE, TMT-A, and TMT-B of the MCI par-
ticipants in that study were all considerably lower than 
those in our study. Taken together with the brain volume 
results, the participants in our study could be considered 
early MCI participants. Networks similar to ours were 
suggested to be reduced in MCI in previous fMRI stud-
ies [10, 11, 78]. In a previous study comparing the func-
tional connectivity of the DAN and VAN in HC and MCI, 
the attentional systems in patients with MCI degenerated 
in a selective manner, specifically with decreased func-
tional connectivity in the DAN but preserved connectiv-
ity in the VAN [10, 11]. In this study, the VAN and DAN 
were significantly decreased in the MCI group com-
pared with the HC group, and the activity of the DAN 
was significantly correlated with cognitive function. It 

Table 4 The amplitude of the ERP waveforms at N2 and P3

HC, healthy condition; MCI, mild cognitive impairment; IQR, interquartile range; ch., channel
* p < 0.008 Wilcoxon rank sum test after Bonferroni correction

Variable Total HC MCI p value
n = 449 n = 402 n = 47

Congruent condition
 N2, ch. Fz—amplitude, μV (IQR)  − 5.12 (− 9.44 to − 2.17)  − 5.12 (− 9.43 to − 2.30)  − 5.04 (− 11.76 to − 1.41) 0.900

 N2, ch. Cz—amplitude, μV (IQR)  − 6.10 (− 10.39 to − 2.67)  − 6.30 (− 10.63 to − 2.82)  − 4.47 (− 8.35 to − 1.20) 0.068

 N2, ch. Pz—amplitude, μV (IQR)  − 8.64 (− 13.54 to − 4.87)  − 8.72 (− 13.61 to − 4.95)  − 7.32 (− 11.44 to − 4.26) 0.209

 P3, ch. Fz—amplitude, μV (IQR) 10.69 (7.13–16.92) 10.74 (7.09–16.92) 9.98 (7.18–16.09) 0.573

 P3, ch. Cz—amplitude, μV (IQR) 9.88 (6.31–14.04) 9.88 (6.35–14.12) 9.67 (6.12–13.44) 0.593

 P3, ch. Pz—amplitude, μV (IQR) 13.86 (9.81–19.92) 14.33 (10.04–20.23) 12.01 (8.36–16.92) 0.030

Incongruent condition
 N2, ch. Fz—amplitude, μV (IQR)  − 5.43 (− 9.40 to − 2.58)  − 5.32 (− 9.18 to − 2.44)  − 6.55 (− 10.25 to − 3.78) 0.152

 N2, ch. Cz—amplitude, μV (IQR)  − 7.10 (− 10.49 to − 3.47)  − 7.24 (− 10.46 to − 3.49)  − 5.61 (− 11.36 to − 3.09) 0.570

 N2, ch. Pz—amplitude, μV (IQR)  − 9.38 (− 14.23 to − 5.63)  − 9.39 (− 14.08 to − 5.68)  − 9.08 (− 15.56 to − 4.82) 0.982

 P3, ch. Fz—amplitude, μV (IQR) 10.88 (7.17–15.80) 10.96 (7.26–15.80) 10.62 (5.80–13.96) 0.269

 P3, ch. Cz—amplitude, μV (IQR) 9.59 (6.20–13.90) 9.81 (6.42–13.97) 9.01 (5.28–12.54) 0.299

 P3, ch. Pz—amplitude, μV (IQR) 12.71 (8.43–18.29) 12.87 (8.73–18.09) 10.18 (7.16–20.15) 0.232

No response condition
 N2, ch. Fz—amplitude, μV (IQR)  − 10.08 (− 15.36 to − 5.98)  − 10.13 (− 15.55 to − 5.99)  − 9.75 (− 14.40 to − 5.53) 0.367

 N2, ch. Cz—amplitude, μV (IQR)  − 9.95 (− 15.30 to − 6.23)  − 10.29 (− 15.89 to − 6.72)  − 6.67 (− 11.40 to − 4.09)  < 0.001*

 N2, ch. Pz—amplitude, μV (IQR)  − 10.82 (− 16.18 to − 6.57)  − 11.15 (− 16.73 to − 6.76)  − 8.82 (− 13.88 to − 4.42) 0.010

 P3, ch. Fz—amplitude, μV (IQR) 10.79 (5.24–17.75) 11.06 (5.34–18.35) 7.41 (5.02–13.61) 0.047

 P3, ch. Cz—amplitude, μV (IQR) 10.20 (6.19–17.16) 10.68 (6.20–17.39) 8.25 (6.06–12.10) 0.074

 P3, ch. Pz—amplitude, μV (IQR) 13.01 (8.01–20.16) 13.14 (8.03–20.23) 11.63 (8.14–17.90) 0.364
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is possible that changes in the DAN occur at an earlier 
stage of MCI, suggesting that it may serve as an indica-
tor for early detection of cognitive decline. The results 
of this study showed that although there were no sig-
nificant differences in the MRI data between the HC and 
MCI groups, there were significant differences in several 

eLORETA-ICA networks. The CR is defined as “a prop-
erty of the brain that allows for cognitive performance 
that is better than expected given the degree of life-
course related brain changes and brain injury or disease” 
[79]. We suggest that the eLORETA-ICA network activ-
ity revealed in this study is a key factor in maintaining 

Fig. 4 Scatterplot of the DAN (IC-14) activity values with demographic characteristics, cognitive function, and behavioral data. A Age. B Education. 
C Proportion of correct responses in the congruent condition. D Proportion of correct responses in the incongruent condition. E Proportion 
of correct responses in the no response condition. F RT in the congruent condition. G RT in the incongruent condition. H MMSE. I Word list memory. 
J TMT-A. K TMT-B. L SDST
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cognitive performance in the face of “life-course related 
brain changes and brain injury or disease.” Here we sug-
gest that the analysis of rs-EEG data by eLORETA-ICA 
may be suitable for capturing the neural implementation 
of CR or the neuroprotective mechanisms of CR. How-
ever, this point needs to be investigated in more detail in 
the future.

ERP during Simon task
The N2 component is believed to contribute to no-go, 
conflict, rare target, and stop signals as control-related 
N2 [16]. In the Simon task used in this study, the par-
ticipants were taught not to press the button in the no 
response condition. In the MCI group, the N2 amplitude 
was lower than in the HC group under the no response 
condition. This may be the result of capturing control-
related N2 components. Previous studies have reported 
differences in the latency and amplitude of the N2 and 
P3 components in HC and MCI patients and reported no 
differences [12]. For example, a series of studies on MCI 
measured ERP during the Simon task; some reported no 
difference in the latency of the N2 component in MCI, 
whereas others reported a difference in the latency and 
amplitude of the N2 component [21, 70, 80]. The results 
for the P3 component were similarly mixed, with some 
studies showing differences depending on the number 
of cognitive regions in which MCI was impaired [12, 22]. 

Therefore, further research on ERPs is required after 
unifying the cognitive tasks used and the types of MCI 
targeted.

Correlation between network and demographic 
characteristics, cognitive function, and behavioral data
Education has been shown to be associated with DAN 
activity [81], and the results of this study support previ-
ous research. Although it has been previously suggested 
that the DAN is correlated with global cognitive function 
and processing speed [82, 83], in this study, it was cor-
related in the MCI group. Several brain networks have 
been shown to be associated with cognitive function 
[84], and these networks potentially support each other 
for complex task demands [85]. In the present study, the 
MCI group showed reduced activity in the SMN, mem-
ory-perception network, VAN, and DAN compared with 
the HC group. Therefore, the HC group may have been 
able to use multiple network resources in the cognitive 
function tests compared with the MCI group. This may 
explain why the DAN, which was originally shown to be 
associated with global cognitive function and processing 
speed, was significantly correlated only in the MCI group.

Discriminating MCI
The most accurate model for discriminating MCI was 
based on the following factors: cognitive function tests, 

Table 5 Discriminating MCI by SVM and logistic regression analyses

Model 1: Cognitive function tests (Word list memory, TMT-A, TMT-B, and SDST)

Model 2: eLORETA-ICA network activities composite score

Model 3: Combination of Model 1 and Model 2

Model 4: Combination of Model 3 and confounding factors

Model 5: Combination of Model 1, confounding factors, and MRI data

Model 6: Combination of all factors

SVM support vector machines, Logistic logistic regression, AUC  area under the curve

Accuracy Sensitivity Specificity Precision F1 Score AUC 

SVM
 Model 1 0.7372 0.6605 0.8077 0.7594 0.7065 0.8077

 Model 2 0.5434 0.0465 1.0000 1.0000 0.0889 0.5063

 Model 3 0.7394 0.6465 0.8248 0.7722 0.7038 0.7996

 Model 4 0.7817 0.7209 0.8376 0.8031 0.7598 0.8400

 Model 5 0.7751 0.7070 0.8376 0.8000 0.7506 0.8424

 Model 6 0.7929 0.7163 0.8632 0.8280 0.7681 0.8495

Logistic
 Model 1 0.7238 0.6651 0.7778 0.7333 0.6976 0.7941

 Model 2 0.6125 0.3070 0.8932 0.7253 0.4314 0.5063

 Model 3 0.7416 0.6884 0.7906 0.7513 0.7184 0.7986

 Model 4 0.7684 0.7395 0.7949 0.7681 0.7536 0.8408

 Model 5 0.7706 0.7395 0.7991 0.7718 0.7553 0.8419

 Model 6 0.7795 0.7535 0.8034 0.7788 0.7660 0.8492
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composite scores of eLORETA-ICA network activities, 
MRI data, and confounders. Interestingly, both mod-
els, one with eLORETA-ICA network activities added to 
cognitive tests and confounders and the other with MRI 
data, showed similarly high accuracy. In a similar study 
investigating the accuracy of combining rs-EEG and MRI 
to discriminate HC from MCI, the AUC was moderate, 
ranging from 0.67 to 0.73 [86]. In the present study, the 
AUC of the combined EEG and MRI model was 0.8492–
0.8495, which is higher than that previously reported. A 
contributing factor to this difference may be that we used 
a composite score of eLORETA-ICA network activity, 
whereas the previous study used a power spectrum anal-
ysis of rs-EEG. Our results suggest that the use of rs-EEG 
instead of rs-MRI may discriminate MCI as well or bet-
ter. This suggests the efficacy of measuring rs-EEG, which 
is noninvasive, relatively inexpensive, and less subject 
to location constraints, and using eLORETA-ICA as an 
adjunctive neurophysiological marker for discriminating 
MCI in community-dwelling older adults.

Limitations
This study had several limitations. First, the sample size 
of patients with MCI was small compared with that of 
recent EEG studies (e.g., [30]), and this study did not 
incorporate long-term follow-up. Thus, whether cor-
relations can be observed longitudinally and cross-
sectionally remains to be determined. We also did 
not assess amyloid and tau levels, which are known 
to affect neurodegeneration. Several aspects of our 
method, such as the removal of artifacts and stimulus 
spacing, were used to optimize the dataset, which likely 
influenced the results. Therefore, it is important to rep-
licate independent cohorts using pre-specified meas-
ures. The Aβ-positivity rate in patients with MCI aged 
60–70  years is estimated to be around 50% [87]. This 
underscores the need to expand the present sample to 
include a wider range of individuals (e.g., HC, MCI, 
subjective cognitive decline, and AD) after a complete 
evaluation of biomarkers. However, the underlying 
cause of MCI remains unclear. It is known that rs-EEG 
activity has different topographic features and frequen-
cies depending on whether the MCI is due to neurode-
generative or other diseases [88]. Therefore, the results 
of this study are not fully understood. In addition, the 
number of participants with MCI was small and not 
divided by subtype. In the future, with more partici-
pants, we will be able to confirm whether the localiza-
tion of EEG abnormalities differs when stratified by the 
MCI subtype. Finally, the correlations among the rs-
EEG network, cognitive function tests, and behavioral 

data must be replicated in an independent data sample 
with an expanded sample size.

Conclusions
Although it is known that the clinical symptoms of MCI are 
a result of neurodegeneration and structural changes in the 
brain over time due to Aβ and tau deposition, there are cur-
rently few studies of how neurophysiological characteristics 
evaluated using EEG can capture these underlying brain 
changes and allow early detection of MCI in community-
dwelling older adults. Here, we show that the eLORETA-
ICA approach to rs-EEG using noninvasive and relatively 
inexpensive EEG is sensitive to the underlying AD process. 
It can be used to assess community-dwelling individuals for 
MCI and may contribute to educational, cognitive func-
tion testing, and behavioral data. The rs-EEG measurement 
is easy to perform and is not subject to the constraints of 
the measurement environment. It has potential as a neuro-
physiological marker to detect community-dwelling older 
adults at risk for the preclinical stages of AD who might 
otherwise experience delays in seeking medical attention 
and the detection of cognitive decline and progression.
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