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Abstract 

Background Disease‑modifying treatments for Alzheimer’s disease highlight the need for early detection of cog‑
nitive decline. However, at present, most primary care providers do not perform routine cognitive testing, in part 
due to a lack of access to practical cognitive assessments, as well as time and resources to administer and inter‑
pret the tests. Brief and sensitive digital cognitive assessments, such as the Digital Clock and Recall (DCR™), have 
the potential to address this need. Here, we examine the advantages of DCR over the Mini‑Mental State Examination 
(MMSE) in detecting mild cognitive impairment (MCI) and mild dementia.

Methods We studied 706 participants from the multisite Bio‑Hermes study (age mean ± SD = 71.5 ± 6.7; 58.9% female; 
years of education mean ± SD = 15.4 ± 2.7; primary language English), classified as cognitively unimpaired (CU; n = 360), 
mild cognitive impairment (MCI; n = 234), or probable mild Alzheimer’s dementia (pAD; n = 111) based on a review 
of medical history with selected cognitive and imaging tests. We evaluated cognitive classifications (MCI and early 
dementia) based on the DCR and the MMSE against cohorts based on the results of the Rey Auditory Verbal Learning 
Test (RAVLT), the Trail Making Test‑Part B (TMT‑B), and the Functional Activities Questionnaire (FAQ). We also compared 
the influence of demographic variables such as race (White vs. Non‑White), ethnicity (Hispanic vs. Non‑Hispanic), 
and level of education (≥ 15 years vs. < 15 years) on the DCR and MMSE scores.

Results The DCR was superior on average to the MMSE in classifying mild cognitive impairment and early dementia, 
AUC = 0.70 for the DCR vs. 0.63 for the MMSE. DCR administration was also significantly faster (completed in less than 
3 min regardless of cognitive status and age). Among 104 individuals who were labeled as “cognitively unimpaired” 
by the MMSE (score ≥ 28) but actually had verbal memory impairment as confirmed by the RAVLT, the DCR identified 
84 (80.7%) as impaired. Moreover, the DCR score was significantly less biased by ethnicity than the MMSE, with no sig‑
nificant difference in the DCR score between Hispanic and non‑Hispanic individuals.
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Conclusions DCR outperforms the MMSE in detecting and classifying cognitive impairment—in a fraction 
of the time—while being not influenced by a patient’s ethnicity. The results support the utility of DCR as a sensitive 
and efficient cognitive assessment in primary care settings.

Trial registration ClinicalTrials.gov identifier NCT04733989.

Keywords Alzheimer’s disease, Clock Drawing Test, Cognitive screening, Digital cognitive assessment, Dementia, Mild 
cognitive impairment, Mild neurocognitive disorder, Mini‑Mental State Examination, Neurocognitive disorder, Rey 
Auditory Verbal Learning Test

Introduction
Brain disorders cause greater disability than cardiovascu-
lar diseases and cancers combined, and according to the 
projections by the World Health Organization (WHO), 
by 2030, brain-related disabilities will contribute to half 
of the global economic burden caused by disability [1]. 
With dementia as the leading cause of disability among 
older adults [2] and Alzheimer’s disease (AD) as the 
most common cause of dementia, forecasts predict that 
by 2050, the number of individuals with AD and related 
dementias (ADRD) will reach 13.8 million in the U.S. [3] 
and 152 million globally [2].

The recent success of clinical trials for treating AD with 
anti-amyloid agents (lecanemab, donanemab) [4–6] and 
the approval of two such agents by the US Food and Drug 
Administration [7, 8] for early-stage AD—mild cogni-
tive impairment (MCI) and mild dementia—highlight the 
importance of detecting cognitive impairment at early 
stages. The donanemab study stratified for disease sever-
ity as measured by tau load and found highly different 
results, with the clear strongest benefit in those with less 
severe disease [6]. These results confirm that the sooner 
cognitive impairment (CI) is detected, the larger the ben-
efits of treatment in slowing down the trajectory of the 
patients’ cognitive decline, preventing loss of functional 
independence, and minimizing impairment in activities 
of daily living (ADLs) [9].

This is in sharp contrast with the reality of the cur-
rent status of cognitive screening. The vast majority of 
CI cases are detected reactively only after the patients or 
their family members or care partners report cognitive 
or memory concerns to healthcare providers. Therefore, 
when most CI cases are detected, patients are further 
along the trajectory of cognitive decline and likely outside 
the optimal window for pharmacological [9] or nonphar-
macological (lifestyle and psychosocial) [10, 11] interven-
tions. This underlines the importance of shifting current 
practices in wide adoption of routine cognitive screening 
for patients above a certain age (e.g., 55 years old).

The need for routine cognitive screening that can 
detect CI at early stages in primary care cannot be cir-
cumvented by providing broad access to blood-based 
AD biomarkers alone as some have suggested [12–14]. 

Biomarker levels lack a strong association with the level 
of cognitive function and thus cannot reliably predict dis-
ability [15], which is frequently the patient’s main con-
cern. The partial dissociation between AD biomarker 
status and cognitive functioning means that  neuropsy-
chological assessment is critical for early detection of 
cognitive impairment. In fact, up to one-third of indi-
viduals with a positive biomarker test do not develop 
dementia and thus  may not be suitable candidates for 
disease-modifying treatments (DMTs) [15]. On the other 
hand, approximately 20–25% of individuals aged 65 and 
above develop mild cognitive impairment (MCI) [16, 
17], with 10–15% of individuals with MCI progressing to 
dementia each year [3].

These findings indicate that both cognitive evaluation 
and biomarker testing are necessary to provide a com-
plete picture of the patient’s brain function, help define 
the biology of the disease [18], and critically aid in the 
identification of suitable candidates for DMTs in a timely 
manner. However, traditional paper-based neuropsycho-
logical tests such as the Mini-Mental State Examination 
(MMSE) and Montreal Cognitive Assessment (MoCA) 
may not be suitable for routine cognitive screening in pri-
mary care because of their lower sensitivity to early stages 
of cognitive impairment, long completion times, subjec-
tive scoring, need for specialized training to administer 
and interpret  the tests, strong influence of educational 
and racial/ethnic backgrounds, and limited scalability. 
Furthermore, they provide only a score, with little to no 
clinical insight for primary care providers about what 
to do next. Digital cognitive assessments (DCAs) may 
address these limitations. To do so, DCAs need to be 
brief (< 5  min), sensitive for early CI detection, reliable, 
easily administered by nonphysician staff members, and 
relatively free from educational, linguistic, or cultural 
biases. They must also fit seamlessly into the clinical 
workflow of primary care providers (PCPs), including 
integration into electronic health records (EHRs) [19].

Digital Clock and Recall (DCR)
One candidate DCA that provides a solution to these 
obstacles is the Linus Health Digital Clock and Recall 
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(DCR™). The DCR detects subtle signs of cognitive 
impairment by analyzing an individual’s performance in 
a combination of clock drawing and word recall tasks to 
enable early detection. It incorporates and expands on the 
DCTclock™ [20, 21] with 3-word immediate and delayed 
verbal recall tests. The DCR represents a machine learn-
ing (ML)-enabled implementation of the Boston Process 
Approach (BPA) [22–25] to provide objective insights 
into patients’ cognitive functions, including verbal and 
semantic memory, attention and executive function, visu-
ospatial skills, receptive and expressive language,  and 
simple and complex  motor skills. Through analysis of 
the  patient’s process of completing the assessment, and 
not merely the final product, the DCR offers clinicians 
valuable insights into subtle cognitive deficits. ML algo-
rithms on the generated metrics can then define sensitive 
scores and predictors for specific risk (e.g., hippocampal 
volume loss or amyloid deposition in the brain).

Our principal objective in this study  was to evaluate 
the utility of the DCR compared to the commonly used 
MMSE for the purpose of cognitive screening for CI, 
where CI comprises MCI and mild dementia likely  due 
to AD. This is because identifying individuals at this 
level of impairment is crucial for patients’ eligibility for 
DMTs and maximizing their benefit from therapeutic 
interventions.

Specifically, we aimed to:

(1) Compare the CI classification by the DCR and 
the MMSE against cohort classifications based on 
the Rey Auditory Verbal Learning Test (RAVLT) 
for assessment of verbal episodic memory, the 
Trail Making Test-Part B (TMT-B) for assess-
ment of executive function, and the Functional 
Activities Questionnaire (FAQ) for assessment 
of functional dependence in daily activities. We 
hypothesized that due to its higher sensitivity, 
the DCR would have greater accuracy than the 
MMSE for detecting CI.

(2) Evaluate the ability of the DCR to detect CI 
among individuals who were labeled as cogni-
tively unimpaired by the MMSE (score ≥ 28) but 
infact  had impairment of verbal episodic memory 
as confirmed by the RAVLT. We also performed 
the reverse comparison to evaluate the utility of the 
MMSE to detect cases of CI missed by the DCR. 
We hypothesized that due to its higher sensitivity, 
the DCR would be able to detect memory impair-
ment in a relatively higher number of individuals 
whose true impairment was missed by the MMSE.

(3) Compare the influence of demographic character-
istics such as race, ethnicity, and level of education 
on the DCR and MMSE scores. Due to the digital 

nature and the process-based (BPA) foundation of 
the DCR, we hypothesized that the DCR would be 
less influenced by demographic factors relative to 
the MMSE.

Methods
Sample and assessments
We studied 706 participants from the prospec-
tive, multisite, and multivisit Bio-Hermes study (age 
mean ± SD = 71.5 ± 6.7; 58.9% female; 85.1% White; 11.7% 
Black or African-American; 2.2% Asian; 9.3% Hispanic or 
Latino; years of education mean ± SD = 15.4 ± 2.7; pri-
mary language English), classified by the study organizers 
into three cohorts based on clinical diagnosis of MCI or 
dementia verified through medical records or the results 
of selected cognitive and functional assessments includ-
ing the MMSE, RAVLT, and the FAQ (See the  Supple-
mentary materials for details of the  Bio-Hermes study 
visit schedule, protocol, cohort classification criteria, and 
assessments): cognitively unimpaired (CU; n = 360), mild 
cognitive impairment (MCI; n = 234), or probable Alz-
heimer’s dementia (pAD; n = 111) [26]. The Bio-Hermes 
study, organized by the Global Alzheimer’s Platform 
(GAP), was an effort to collect blood and digital biomark-
ers from a large, racially and ethnically diverse sample of 
participants  at various levels of cognitive function [27]. 
Data from the Bio-Hermes study will be publicly available 
on the Alzheimer’s Disease Data Initiative website in the 
future. Participants in this study performed a battery of 
neuropsychological tests on the initial visit and question-
naires and the DCR on each of their visits. We included 
only participants who had a first visit with the DCR, 
RAVLT, TMT-B (for purposes of cohort definition), and 
FAQ scores. No follow-up tests were examined, making 
this a cross-sectional study.

Digital Clock and Recall (DCR)
The DCR is a self-adminstered, supervised digital cog-
nitive assessment composed of immediate recall, clock 
drawing (DCTclock), and delayed recall. The immedi-
ate and delayed recall components of the DCR consist 
of 3 words. Patients are verbally presented with 3 words 
and are  asked to immediately repeat them  (Immediate 
Recall). After completing the DCTclock, the patient is 
then asked to repeat the initial 3 words (Delayed Recall). 
The Delayed Recall assesses verbal episodic memory, 
which is the cognitive function particularly impaired at 
early stages of AD [28–30]. Evaluation of verbal episodic 
memory is important both for classifying the patient’s 
current cognitive status and for estimating the likelihood 
of the patient’s progression to dementia over the sub-
sequent decade [31, 32]. The DCTclock is composed of 
a Command Clock task followed by a Copy Clock task. 
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In Command Clock, the task is to draw an analog clock 
from memory with hands set to “10 after 11,” whereas 
Copy Clock involves copying an already-drawn clock set 
to the same time. Participants were allowed to take the 
DCR only once per visit.

A key advantage of the DCTclock is its ability to assess 
the various cognitive and graphomotor functions that are 
involved in the process of clock drawing, including draw-
ing efficiency, speed of information processing, simple 
and complex motor skills, and visuospatial reasoning [20, 
33]. ML-enabled scoring provides nuanced measures of 
motor, cognitive, and time-based performance that are 
not captured by traditional, visually scored pen-and-
paper clock drawing tests (CDTs) or digitized CDTs that 
rely only on the outcome of the test [20, 33, 34]. These 
measures enable the detection of subtle preclinical signs 
of cognitive deficit and the  classification of the  CI sub-
type [35].

Scoring of the immediate and delayed recall
There is no time limit for the Immediate and Delayed 
Recall tasks. Each word recalled correctly in the Delayed 
Recall contributes one point (for a maximum of 3 points) 
toward the total DCR score. The Immediate Recall does 
not directly contribute to the overall DCR score. How-
ever, it is important to review the patient’s Immediate 
Recall performance to assess potential concerns regard-
ing the patient’s  hearing, attention, immediate/short-
term memory,  or executive function. The DCR records 
the patient’s voice response following the three-word 
prompt separately for Immediate and Delayed Recall. 
These recordings are converted to text representations 
through automated speech recognition and are  then 
compared against the prompted words to calculate accu-
racy. Internal validation of the automatic speech rec-
ognition in the DCR algorithm compared to a human 
transcriber has shown a 95% recognition accuracy.

Scoring of the DCTclock
The DCTclock contributes up to 2 points to the overall 
DCR score. The design and implementation of the DCT-
clock data analysis engine have been previously reported 
in detail [20, 33]. Briefly, the measures that are derived 
from the DCTclock are summarized in a single sum-
mary score out of 100 with cutoff scores of < 60, 60–74, 
and ≥ 75 contributing 0, 1, and 2 points, respectively, to 
the total DCR score. The DCTclock includes four Com-
mand and Copy Clock composite scales, each composed 
of 22 subscales that evaluate various aspects of the clock 
drawing process: drawing efficiency, speed of informa-
tion processing, simple and complex motor skills, and 
visuospatial reasoning [20, 33, 35]. Out of 1891 DCR tests 
performed across visits in the original data set, only 4% 

of the DCTclocks were unanalyzable. More than half of 
those were not from participants’ first DCR tests, which 
are the tests evaluated here. No unanalyzable tests were 
included in this work.

Scoring of Digital Clock and Recall
The total DCR score is a combination of the DCTclock 
and the Delayed Recall scores and is presented as 0–5 
(Fig. 1A). The DCTclock and the Delayed Recall contrib-
ute 0–2 points and 0–3 points to the DCR score, respec-
tively (Fig. 1B, C). The DCR score is represented as Green 
(DCR score 4–5), Yellow (DCR score 2–3), or Red (DCR 
score 0–1). A Green DCR score means no indication of 
CI was detected. Individuals with a the Yellow score are 
considered borderline for CI. The Yellow DCR score 
identifies patients who are at the earliest stages of CI and, 
therefore, may benefit the most from actionable recom-
mendations such as improving their brain health-related 
lifestyle and psychosocial factors. Patients with a Red 
DCR score require the most attention because their per-
formance indicates they are likely to have CI and would 
benefit from referral to specialized services for further 
evaluation and workup.

The overall scoring method (0–2 points from the clock 
test and 0–3 points for the delayed recall) is similar 
between the DCR and the Mini-Cog©. However, the total 
scores of 0, 1, and 2 on the Mini-Cog indicate a higher 
likelihood of cognitive impairment  (and  dementia in 
many cases), whereas DCR scores 0–3 indicate at least 
some degree of cognitive impairment (yellow or red) 
while DCR scores 4–5 (green) are not indicative of cogni-
tive impairment. This is because a loss of 2 out of 5 points 
in the DCR can occur in three ways: (1) a score of 0 out of 
2 in the DCTclock—a likely indication of impairment in 
at least some of the various cognitive domains assessed 
by the DCTclock including executive function and visu-
ospatial skills; (2) failure to recall 2 of the 3 words—a 
likely indication of verbal episodic memory; or (3) loss of 
1 point from the DCTclock and 1 point from the delayed 
recall—a likely indication of subtle or mild impairment in 
a mixture of some of the domains assessed by the DCT-
clock and verbal episodic memory. Scores 0, 1, or 2 on 
the DCR indicate an even greater likelihood of impair-
ment in these cognitive domains.

Cohort classification
The Bio-Hermes study protocol includes cohort classifi-
cation based on a mix of expert evaluation and neuropsy-
chological assessment results that included the MMSE. 
To avoid circularity in our comparison of the  DCR and 
the MMSE, we devised an objective, rules-based cohort 
classification scheme based on memory, executive, and/
or functional impairment as assessed by the RAVLT, 
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TMT-B, and FAQ, respectively. Verbal episodic memory 
impairment on the RAVLT was defined as a long delay 
score ≥ 1 standard deviation (SD) below age-adjusted 
means [36]. Executive dysfunction on the TMT-B was 
defined as completion time ≥ 1 SD above the mean of 
age-adjusted population means [37]. Functional impair-
ment on the informant-reported FAQ was defined as 

an FAQ score ≥ 6 [38, 39]. As a final measure, given our 
interest in the early detection of cognitive decline, we 
excluded participants with an FAQ > 9 (as these could 
be considered to be further into the disease progression, 
including moderate-to-severe dementia).

The rules-based classification scheme produced the 
following cohorts (Fig.  2): Cohort 1 (healthy), Cohort 2 

(A)

(B) (C)

Fig. 1 Scoring of the DCR (A), DCTclock (B), and Delayed Recall (C)

Fig. 2 Cohort classification scheme based on the FAQ, RAVLT, and TMT‑B scores. Starting with evaluating functional impairment (i.e., FAQ score ≥ 6), 
the decision tree considered verbal‑memory (RAVLT) and executive (TMT) impairment. Impairment was defined as at least 1 standard deviation 
away from the age‑adjusted mean in the direction of worse performance (e.g., slower TMT)
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(single-domain amnestic MCI; aMCI), Cohort 3 (mul-
tiple-domain amnestic MCI; mdMCI), Cohort 4 (dys-
executive or non-amnestic MCI; naMCI), and Cohort 5 
(probable mild ADRD). Cohorts 2 through 5 were then 
combined together in order to generate the final cog-
nitively impaired (CI) cohort that was the target of our 
classification analyses.

Analyses
The analyses addressed three goals:

(1) Comparing the overall CI detection (rules-based 
Cohort 1 [healthy] vs. the other four cohorts) based 
on the DCR and the MMSE;

(2) Comparing the classification accuracy and sensitiv-
ity of the DCR vs. the MMSE for detecting memory 
impairment as confirmed by impairment on the 
RAVLT delayed recall (long delay score ≥ 1 standard 
deviation (SD) below age-adjusted means [36]);

(3) Comparing the influence of Race (White vs. Non-
White), Ethnicity (Hispanic vs. Non-Hispanic), and 
Educational level (high [≥ 15 yrs] vs. low [< 15 yrs]) 
on DCR and MMSE scores.

To address the first goal, we used a machine-learning 
(ML) classification approach. We first split the data into 
training (70%) and testing (30%) sets to avoid overfitting. 
We ensured that training and test sets were balanced for 
the distributions of the respective target cohorts for each 
goal. The rules-based classification scheme, when applied 
to this dataset, produced an imbalance in the distribu-
tion of the resulting categories (e.g., more MCI partici-
pants than healthy controls). When the  class imbalance 
is severe, improperly trained ML models learn to predict 
the majority class only because this optimizes their accu-
racy. To mitigate this issue, we used standard upsampling 
procedures on the training set, where participants were 
randomly sampled with replacement until all classes 
matched the frequency of the majority class. This proce-
dure was not performed on the test set, which retained 
the distribution of the original categories that was repre-
sentative of the sample. We then trained random forest 
(RF) models to classify training set cohorts and evalu-
ated model performance using the test set. All RF models 
were tuned to use the least number of features per itera-
tion, for as long as the out-of-bag error estimates were 
over 0.001 and the number of trees was within 500.

To examine the potential variability of performance 
across train and test splits, we repeated the modeling 
procedure 200 times, each time using a different, random 
train-test partition of the data. Each of these splits fol-
lowed the rules described above. We then computed the 
AUC for each iteration for the DCR and MMSE models. 

We report the distribution and central tendencies of the 
AUC for each model. Unlike k-fold cross-validation, this 
procedure allowed splits from different iterations to be 
similar to one another, providing a more nuanced sense 
of the influence of variability in our data [40]. We report 
AUCs and accuracy metrics (sensitivity, specificity, bal-
anced accuracy) based on optimized decision thresh-
olds given by the Youden statistic (i.e., the best balance 
between sensitivity and specificity). We report summary 
statistics for the AUCs across these iterations.

For Goal 1, we compared models that included either 
DCR features only, MMSE total score only, demographics 
only (age, sex, and years of education), and a model that 
used all these sources of information. This final model 
was implemented to act as an upper bound of classifi-
cation performance for this dataset to contextualize the 
performance of the other models. DCR predictor features 
consisted of all age-scaled subscores that compose the 
DCTclock (no composite scores; see Scoring the DCT-
clock for details) and the delayed recall score.

For Goal 1, we thresholded the MMSE total score at 28, 
reflecting the way this cutoff is often used in clinical set-
tings to rule out cognitive impairment [41–43]. For Goal 
2, we calculated the proportion of individuals with a DCR 
score ≤ 3 among the subset of individuals who had an 
MMSE score ≥ 28 but in fact had memory impairment as 
confirmed by delayed recall performance on the RAVLT. 
Conversely, we calculated the proportion of individuals 
with an MMSE score < 28 among the subset of individuals 
who had a DCR score ≥ 4 but had memory impairment as 
confirmed by the RAVLT.

We performed three analyses to address the third goal. 
First, we compared the DCR and MMSE scores in White 
vs. Non-White, Hispanic vs. Non-Hispanic, and High vs. 
Low education groups using two-sample Wilcoxon rank 
sum tests. Second, we performed two Poisson regressions, 
each predicting either DCR or MMSE scores from a set of 
features that included race, ethnicity, education, sex, age, 
and cohort status (cognitively  unimpaired or impaired). 
Third, we compared the degree of demographic bias 
using a bootstrapped procedure. For each demographic 
characteristic separately, we sampled 100 individuals 
from each group (e.g., Hispanic and Non-Hispanic) with 
replacement 5000 times. On each of the 5000 iterations, 
we performed a linear model for DCR and MMSE sepa-
rately, where the model predicted the previously com-
puted scaled score of the test using predictors for race, 
ethnicity, years of education, sex, age, and cohort status. 
The coefficients for the respective demographic factor 
of  interest were used to calculate the mean difference 
between demographic groups (i.e., the bias of the test 
while accounting for other demographics). We then  cal-
culated the difference between the biases in the two tests 
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(DCR minus MMSE). Based on the resulting 5000 differ-
ences of bias, we calculated the 95% confidence intervals 
to establish whether either test had an overall smaller dif-
ference between demographic groups (i.e., distribution of 
differences significantly above or below zero). This proce-
dure allowed us to evaluate if either test had a significantly 
smaller bias relative to the other test.

Tools used
Analyses were performed with the R statistical program-
ming language [44] (v4.1.3). The packages used in this 
work included Tidyverse [45] (v2.0.0), corrplot [46] (v0.92), 
lme4 [47] (v1.1-33), gt [48] (v0.9.0), randomForest (v4.7-
1.1) [49], pROC (v1.18.0) [50], and caret (v6.0-94) [51].

Results
Cohort counts
The rules-based cohort classification among a total of 
706 individuals with available and eligible data resulted 
in a total of 331 (46.8%) participants in Cohort 1 (Cog-
nitively Unimpaired), 176 (24.9%) in Cohort 2 (single-
domain amnestic MCI; aMCI), 61 (8.6%) in Cohort 3 
(multiple-domain MCI; mdMCI), 71 (8.6%) in Cohort 4 
(non-amnestic MCI; naMCI), and 59 (8.3%) in Cohort 5 
(probable probable mild ADRD). Cognitively impaired 
and unimpaired cohorts for the first set of analyses were 
created by grouping Cohorts 2 through 5 into a sin-
gle cognitively impaired group. The rules-based cohort 
approach resulted in 331 (46.6%) impaired and 374 
(52.9%) unimpaired individuals. One participant did 
not have a valid reported score. Demographics for each 
cohort are provided in Table 1.

Cognitive impairment classification by the DCR vs. MMSE
For our first goal, we evaluated which test would per-
form better at classifying general cognitive impairment, 

defined as all impaired cohorts from the rules-based 
classification. We examined performance as a func-
tion of random train and test splits by repeating the 
model-fitting procedure from Goal 1 using 200 dif-
ferent random train-test splits (see “Methods” for 
details). In this way, it is possible to estimate the 
extent to which the selection of a single random train-
test split influences the model and would result in a 
poorly performing model when faced with real-world 
data. Both median sensitivity and negative predic-
tive value (NPV) were higher for the DCR (sensitiv-
ity = 0.67, SD = 0.04; NPV = 0.62, SD = 0.03) than for 
the MMSE (sensitivity = 0.57, SD = 0.03; NPV = 0.59, 
SD = 0.02) and demographics (sensitivity = 0.51, 
SD = 0.06; NPV = 0.52, SD = 0.03). In contrast, median 
specificity and positive predictive value (PPV) were 
higher for the MMSE (specificity = 0.69, SD = 0.03; 
PPV = 0.68, SD = 0.03) than for the DCR (specific-
ity = 0.61, SD = 0.04; PPV = 0.66, SD = 0.02) and demo-
graphics (specificity = 0.56, SD = 0.07; PPV = 0.59, 
SD = 0.03). However, as seen in Fig.  3A,  the AUC for 
the DCR (median = 0.70, SD = 0.030) was significantly 
higher than the AUC for the MMSE (median = 0.63, 
SD = 0.03) across partitions (paired permutation on 
median AUC differences, p < 0.0001; 5000 iterations), 
whereas the demographics-only model performed the 
worst (median = 0.48, SD = 0.03). The model with all 
features also had a median of 0.7 (SD = 0.032), indicat-
ing that the DCR alone was as good as all sources of 
information combined. These results add confidence to 
the observed better performance of the DCR in detect-
ing cognitive impairment via a performance variability 
estimation that is rarely reported in this kind of study. 
Given the probability of low scores in older cognitively 
unimpaired individuals [52], we replicated this analy-
sis using a more stringent - 1.5 SD threshold on the 

Table 1 Demographic information for each of the resulting cohorts. χ2 refers to a chi‑squared test for equality of proportions. The 
T‑values provided are for independent‑samples T‑tests. W‑values refer to the statistics for Wilcoxon rank sum tests

Unimpaired
% or Median (SD)

Impaired (CI)
% or Median (SD)

Comparison test

Total N 331 374

Sex (Females) 65% 52% χ2 = 11.58, p < 0.001

Ethnicity (Hispanic) 6% 11% χ2 = 4.37, p < 0.05

Race (White) 91% 79% χ2 = 21.34, p < 0.0001

Age in years 71.9 (6.8) 71.2 (6.6) T = 1.23, p = 0.21

Years of education 16 (2.5) 16 (2.7) W = 69.94, p < 0.01

MMSE 29 (1.7) 27 (2.7) W = 38.22, p < 0.00001

RAVLT Total Score 8 (2.3) 4 (3.0) W = 106.32, p < 0.0001

Trails B Duration 105 (42.3) 151 (36.7) T = − 10.37, p < 0.00001

PET Aβ Positivity 23% 36% χ2 = 12.91, p < 0.001
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RAVLT during cohort definition. The results are shown 
in Supplementary Figure S1 and Supplementary Table 
S1. The  relative differences in AUC among tests were 
similar to those obtained with a - 1 SD threshold.

The higher performance of DCR is accompanied by a 
consistently lower and less variable adminitration time, 
as shown in Fig. 3B (DCR: median = 2.5 min, SD = 0.53; 
MMSE: median = 6 min, SD = 2.43). A log-linear model 

estimating time to complete based on the interaction 
between test (DCR or MMSE) and cohort (unimpaired, 
MCI, mild/early dementia) showed that (1) the MMSE 
administration took significantly longer (t = 51.09, 
p < 0.0001) and (2) both impaired cohorts tended to be 
slower overall in completing these tests (MCI: t = 2.04, 
p < 0.05; dementia: t = 6.84, p < 0.0001). The difference 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

All DCR MMSE Demographics

AU
C

A. DCR outperforms MMSE in MCI and early/mild
dementia classification across 200 data partitions

Unimpaired MCI Mild/Early Dementia

DCR MMSE DCR MMSE DCR MMSE

1
3
5
7
9

11
13
15
17
19
21

Ti
m

e 
(m

in
s)

B. DCR takes less time to administer
regardless of condition

Fig. 3 A AUCs for 200 iterations of the binary mild cognitive impairment (MCI) and mild/early dementia classification models. On each iteration, 
we randomly split the data into train/test sets using the same distribution matching and upsampling procedure. For each split, we then fitted 
the DCR and MMSE models as before and stored the resulting AUC. On average, the AUC for the DCR‑based model (median = 0.70, SD = 0.03) 
was significantly greater than that for the MMSE (median = 0.63, SD = 0.02; paired permutation p < 0.0001) and was as good as the model inclusing 
all the sources of information (median = 0.7, SD = 0.032) including the DCR, the MMSE, and demographics. The dashed line represents 50% 
(chance level) classification accuracy. B The DCR took significantly less time to administer regardless of cohort (log‑normal regression, p < 0.0001) 
and was less variable (DCR SD = 0.53; MMSE SD = 2.43)
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between test administration times did not significantly 
vary as a function of cohort status.

Sensitivity for detecting memory impairment by the DCR 
vs. the MMSE
For the second goal, we evaluated the degree to which 
each cognitive assessment missed identifying partici-
pants with memory impairment (a total of 276 individu-
als) using a simple score threshold and to what degree 
the tests disagreed with each other (Fig.  4). A total of 
104 individuals were labeled as cognitively unimpaired 
by the MMSE (score ≥ 28) but were impaired in their 
RAVLT delayed recall performance (i.e., 37.6% misclas-
sified). However, DCR scores ≤ 3 identified 84 (80.7%) of 
those missed individuals (i.e., corrected or rescued). In 
contrast, only 22 individuals were labeled as cognitively 
unimpaired by the DCR (score ≥ 4) but were found to be 
impaired in their RAVLT delayed recall performance (i.e., 
10.6% misclassified), among whom an MMSE score < 28 
identified only 2 individuals (10%). In short, compared 
with the MMSE, the DCR missed far fewer individuals 
confirmed by the RAVLT to be memory-impaired, and 
it also recovered a much higher proportion of the cases 
missed by the MMSE than vice versa.

Influence of diversity and education level on the DCR 
and MMSE
After evaluating the classification performance of these 
tests, we wanted to examine their bias due to different 

demographic factors. Figure 5 displays the results as box-
plots for each demographic group and test. The MMSE 
(but not the DCR) performance was significantly dif-
ferent between Hispanic and non-Hispanic individuals 
(V = 16418, p < 0.01). As expected, individuals with higher 
education outperformed those with lower education in 
both tests (all p’s < 0.0001). A Poisson regression with pre-
dictors for sex, age, education, race, ethnicity, and cohort 
status showed that neither DCR nor MMSE score was 
significantly different between Hispanic and Non-His-
panic individuals (both p’s > 0.05), but both tests showed 
a significant influence of education (p’s < 0.05). In terms of 
race subgroups, the DCR scores were significantly differ-
ent (p < 0.05) while the difference in MMSE scores did not 
reach significance (p = 0.09) when accounting for cohort 
status. However, differences in the existence of statisti-
cal significance do not by themselves show which test is 
less biased compared to the other test. To address that 
question directly, we conducted a comparative bootstrap-
ping procedure (see “Methods” for details) that showed 
the bias (i.e., the overall difference between demographic 
subgroups based on the coefficients of a linear model) 
due to ethnicity was significantly larger for the MMSE 
than for the DCR (median scaled bias difference = 0.44 
larger for the MMSE, two-sided 95% CI = 0.12–0.75). In 
contrast, the bias due to either race (median scaled bias 
difference = 0.06 larger for the  MMSE, two-sided 95% 
CI = - 0.25–0.35) or education (median scaled bias differ-
ence = 0, 95% CI = - 0.04–0.02) was not significantly dif-
ferent between the two tests.

Discussion
The present results indicate that the DCR has greater sen-
sitivity and overall accuracy than the MMSE for detecting 
and classifying cognitive impairment (CI). In addition, 
we found that the DCR has greater sensitivity than the 
MMSE for detecting verbal episodic memory impair-
ment as confirmed by the RAVLT, which is a hallmark 
of early stages of AD. Thus, the DCR has more sensitiv-
ity for early detection of AD than the MMSE. Moreover, 
the DCR has a substantially shorter administration time. 
Finally, the DCR score is significantly  less biased by an 
individual’s ethnicity and demographic factors overall 
than the MMSE.

Classification models trained on features from the DCR 
substantially enhance the capabilities of this brief test rel-
ative to traditional tests. DCTclock, as a next-generation 
assessment analyzing the process of task completion while 
performing a neuropsychological assessment (the Boston 
Process Approach), compared to focusing on the out-
come only, has previously demonstrated high sensitivity 
and classification accuracy for detecting mild cognitive 
impairment [20, 33–35]. The present results build upon 

Fig. 4 Threshold‑based classification of RAVLT‑confirmed verbal 
memory impairment shows that the DCR commits substantially 
fewer misclassifications than the MMSE (light gray) and rescues 
more of the misclassifications done by the MMSE than vice versa 
(dark gray). Memory impairment was defined as delayed recall 
performance on RAVLT at or more than 1 SD below the age‑normed 
mean. Impairment on the DCR was defined as a score of 3 or below, 
whereas impairment on the MMSE was defined as a score below 28
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those DCTclock findings by demonstrating the superi-
ority of the DCR, which combines the DCTclock with 
immediate and delayed verbal recall, for detecting and 
classifying CI compared to the MMSE. Our findings also 
show that relying on the MMSE for cognitive screening 

can result in missing nearly one-third (32%) of patients 
at earlier stages of amnestic cognitive impairment, for 
whom initiating treatment and behavioral interventions 
hold the most promise. In contrast, the DCR was able to 
identify cognitive impairment in more than 80% of those 
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misclassified by the MMSE, enabling early interven-
tions that can substantially change the trajectory of those 
patients’ brain health [6, 9, 11].

We purposefully chose a higher score cutoff for the 
MMSE (≥ 28) than some of the lower cutoffs used in 
other studies (e.g., ≥ 27 or ≥ 26) to be the most conserva-
tive, i.e., to allow the MMSE to have the best chance at 
outperforming the DCR by flagging a larger number of 
scores (< 28 rather than, e.g., < 27 or < 26) as cognitively 
impaired. The finding that, despite such a conservatively 
chosen score cutoff for the MMSE, the DCR had higher 
sensitivity and NPV than the MMSE for identifying cog-
nitive impairment indicates that the DCR is a superior 
test for cognitive screening and is better at detecting indi-
viduals at earlier stages of cognitive impairment, many of 
whom may be missed by the MMSE. Higher specificity 
and PPV of the MMSE likely reflect the fact that by the 
time an individual receives a relatively low score on the 
MMSE, s/he is more likely to be further along the trajec-
tory of cognitive decline and therefore more likely to be 
actually impaired.

Previously published results using the MMSE to classify 
MCI, AD, and vascular cognitive impairment reported 
higher performance  values [43, 53–55]. Those previous 
studies may have overestimated the predictive power of 
the MMSE. This is potentially due to common issues in 
machine learning that inflate accuracy estimates, includ-
ing limited sample sizes, severe class imbalance, or 
advantageous class comparisons that are not representa-
tive of the base rates (e.g., comparing a large cognitively 
unimpaired group to a small group with dementia instead 
of the more difficult comparison to MCI). The results 
detailed herein do not suffer from these limitations.

Several studies have documented significant biases in 
the MMSE due to race, ethnicity, education level, and 
socioeconomic status, which often necessitate different 
scoring criteria for certain demographic groups [56–62]. 
The present results showed that the DCR is significantly 
less influenced than the MMSE by ethnicity, indicating 
the greater utility of the DCR compared to the MMSE for 
cognitive screening in diverse populations. Given the dis-
proportionate prevalence of ADRD among ethnic minori-
ties, which can amplify existing socioeconomic disparities 
and lead to worse health outcomes in these populations 
[62], the deployment of DCAs that are less biased by 
demographic factors and can maintain their utility across 
ethnic groups gains additional importance. Such acces-
sibility can also enable the development of services and 
resources for care partners that are more consistent with 
the needs and circumstances of the local population [63].

Additional considerations and future directions
Based on the National Institute on Aging—Alzheimer’s 
Association (NIA-AA) Research Framework for the bio-
logical definition of AD [18], incorporating biomarker 
data into cognitive classifications in future studies will 
allow for establishing the utility of the DCR for identi-
fying CU, MCI, and dementia groups who are amyloid- 
and/or tau-positive or negative. Such an approach will 
enable a more precise approach to patient triage and 
investigating pharmacological treatments that target spe-
cific pathways in the pathophysiological process of AD 
and in the appropriate individuals.

Although the sample size used in the present study was 
relatively large and diverse, there remains the possibility 
that the composition and characteristics of participants 
in the Bio-Hermes study are not adequately representa-
tive of the wider population of individuals at risk, which 
constitutes the growing aging population across linguistic, 
cultural, and socioeconomic groups. Replications of the 
present findings among non-English speakers and indi-
viduals hailing from diverse geographic regions and cul-
tures are crucial for the successful adoption of DCAs such 
as the DCR among PCPs and patients and for confirming 
the external validity of these results in clinical settings.

While the use of comprehensive neuropsychologi-
cal evaluation as a reference was beyond the scope of 
the present study, a more detailed characterization of 
patients’ cognitive phenotypes may provide a more 
nuanced picture of their cognitive deficits, against which 
the utility of the DCR and its subscores can be evaluated.

Conclusions
Our results indicate that the DCR is a superior cogni-
tive screening test to the MMSE in primary care settings 
where early detection of MCI is critical. Compared with 
the MMSE, we found that the DCR has greater sensitiv-
ity and higher overall accuracy for detecting and classify-
ing cognitive impairment and less demographic bias in a 
substantially shorter administration time (~ 3 min for the 
DCR compared to ~ 7–12  min for the MMSE). In addi-
tion, the DCR is easier to administer by nonphysician 
staff members and offers objective and automatic scor-
ing. Thus, the DCR can more readily  fit into the PCPs’ 
routine clinical workflow, be completed along with other 
vital signs while the patient is waiting for their PCP, and 
alleviate the time pressure constraints experienced by 
the PCPs due to busy schedules and brief clinical vis-
its. Moreover, the digital platform on which the DCR is 
administered allows for easy integration of the results 
into the patient’s EHR as structured data that can be 
tracked longitudinally.
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The DCR can increase the accuracy and efficiency of 
clinical decision-making, patient triage, and treatment 
planning for patients at earlier stages of cognitive impair-
ment, thereby providing a larger window of opportunity 
for their benefitting from approved treatments and for 
researchers’ investigation of novel therapeutics.
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