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Abstract 

Background Alzheimer’s dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) 
dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology 
and prognostic/diagnostic biomarkers.

Methods We performed co‑expression network analysis to identify network modules associated with AD, its neu‑
ropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush 
Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub 
miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we per‑
formed association analysis of the hub miRNAs with their target genes and then performed pathway‑based enrich‑
ment analysis. For replication, we performed a consensus miRNA co‑expression network analysis using the ROS/MAP 
dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed 
a machine learning approach to assess the performance of hub miRNAs for AD classification.

Results Network analysis identified a glucose metabolism pathway‑enriched module (M3) as significantly associated 
with AD and cognition. Five hub miRNAs (miR‑129‑5p, miR‑433, miR‑1260, miR‑200a, and miR‑221) of M3 had signifi‑
cant associations with AD clinical and/or pathologic traits, with miR129‑5p by far the strongest across all phenotypes. 
Gene‑set enrichment analysis of target genes associated with their corresponding hub miRNAs identified signifi‑
cantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network 
analysis identified two AD‑associated consensus network modules and two hub miRNAs (miR‑129‑5p and miR‑221). 
Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, 
sex, and APOE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD‑associated hub miRNAs.

Conclusions Integrative network and machine learning analysis identified miRNA signatures, especially miR‑129‑5p, 
as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis 
and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.
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Background
Alzheimer’s disease is a prevalent cause of demen-
tia, accounting for approximately 60% to 80% of cases 
[1]. It is characterized by the extracellular deposition 
of amyloid-β (Aβ) in the form of diffuse and neuritic 
plaques (NPs) and the presence of intracellular neurofi-
brillary tangles (NFTs) comprised of aggregated hyper-
phosphorylated tau protein [2]. However, the exact 
mechanisms underlying the pathogenesis of Alzheimer’s 
disease remain unclear due to the involvement of com-
plex neurochemical and genetic factors [3]. Dysregulated 
expression of microRNAs (miRNAs) is a potential mech-
anism contributing to gene expression changes in Alzhei-
mer’s disease [4–6].

miRNAs are endogenous single-stranded RNA mol-
ecules approximately 20–23 nucleotides long [7]. They 
primarily repress the translation of specific messen-
ger RNAs (mRNAs) by binding to their 3′-untranslated 
regions (3′-UTR) [8]. Several miRNAs have been identi-
fied as being dysregulated in Alzheimer’s disease, with 
certain miRNAs being highly expressed in the brain [4, 5, 
9, 10]. However, there has been limited consensus among 
studies conducted on relatively small or modest sample 
sizes [11].

The construction of network modules based on the 
correlation of miRNA expression profiles can reveal the 
global properties of biological organization [12], given 
the assumption that miRNAs involved in similar func-
tions tend to be co-expressed [13]. The weighted gene 
co-expression network analysis (WGCNA) approach is 
a method that focuses on gene co-expression networks 
and has been useful in describing the system-level corre-
lation structure among transcripts [14]. Additionally, the 
network-based approach is a dimensionality reduction 
technique for analyzing high-dimensional omics data, 
providing insights into the pathogenesis of multifacto-
rial disorders [15]. Therefore, the WGCNA approach has 
been utilized to enhance our understanding of the patho-
genesis of Alzheimer’s disease [16].

In this study, using miRNA expression profiles from a 
large longitudinal study of aging, the Religious Orders 
Study and Rush Memory and Aging Project (ROS/MAP) 
(N = 702), as a discovery sample, we performed differen-
tial expression analysis and co-expression network anal-
ysis to identify Alzheimer’s dementia (AD)-associated 
network modules and their hub miRNAs. We also inves-
tigated their association with neuropathological mark-
ers [2] and cognition. After selecting target genes of the 
hub miRNAs, we performed association analysis of the 
hub miRNAs with their target genes and then differen-
tial expression analysis of target genes using brain tissue 
RNA-Seq data. For replication analysis, we performed 
a consensus miRNA co-expression network analysis to 

identify AD-associated consensus network modules and 
their hub miRNAs using the ROS/MAP dataset and an 
independent miRNA expression profile dataset (N = 
16) from Gene Expression Omnibus (GEO). Finally, we 
employed a machine learning approach to assess the per-
formance of hub miRNAs for the classification of AD.

Methods
Study samples
Two independent datasets were used: ROS/MAP and 
GEO. In the ROS/MAP cohort, subjects were categorized 
as having no cognitive impairment (NCI) or AD [17, 18]. 
In this study, to achieve a more robust differentiation 
between AD and NCI by employing both clinical and 
neuropathology criteria, AD was defined by Braak NFT 
scores [19] ≧ 4, Consortium to Establish a Registry for 
Alzheimer’s Disease (CERAD) scores [20] of definite Alz-
heimer’s disease (frequent NPs) or probable Alzheimer’s 
disease (moderate NPs), and cognitive diagnosis of prob-
able Alzheimer’s disease with no other causes. NCI was 
defined by Braak scores ≦ 3, the CERAD scores of pos-
sible Alzheimer’s disease (sparse NPs) or no Alzheimer’s 
disease, and clinical diagnosis of no cognitive impairment 
[21]. In the GEO (GSE157239) dataset from the Human 
Brain Bank of the Brazilian Aging Brain Study Group, AD 
was defined by Braak NFT scores [19] ≧ 3 and NCI as 
subjects without neuropathological lesions or neurologi-
cal signs, as previously described [22].

miRNA profiling data
For the ROS/MAP cohort, miRNA profile data were 
downloaded from the Accelerating Medicines Partner-
ship for Alzheimer’s Disease (AMP-AD) Knowledge 
Portal on Synapse (syn3387325) (https:// www. synap se. 
org). The miRNAs were extracted from bulk brain tis-
sue in the dorsolateral prefrontal cortex (DLPFC) using 
the Nanostring nCounter Human miRNA Expression 
assay kit and annotated using definitions from the miR-
Base [23]. These miRNAs were eluted from the miRNe-
asy spin columns in buffer and tested by Nanodrop and 
Bioanalyzer RNA 6000 Nano Agilent chips. The data-
set consisted of 309 miRNAs from 702 individuals after 
correcting for the probe-specific backgrounds and per-
forming a three-step filtering of sample and miRNA 
expression [6, 24]. The miRNA data were normalized 
using a combination of quantile normalization and Com-
bat [25] to remove batch effects. The miRNAs identi-
fied by microarray were validated with specific real-time 
reverse transcription PCR (qRT-PCR) assays, as previ-
ously described in detail [6, 24].

For the GEO dataset, miRNA profiles were down-
loaded from the National Center for Biotechnology 
Information as accession numbers GSE157239 (http:// 
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www. ncbi. nlm. nih. gov/ proje cts/ geo/). The miRNAs 
were extracted from bulk brain tissue in the tempo-
ral cortex, profiled using microarray in the Affymetrix 
miRNA Array, and annotated using definitions from 
the miRBase [23]. After the isolation and biotin labeling 
of the miRNAs was performed, the labeled miRNAs 
were hybridized to the GeneTitan instrument with the 
Array Strip Hybridization kit [26]. Quality control was 
performed using the Expression Console software [27], 
and results were exported for processing in the Tran-
scriptome Analysis Console software [28]. The miRNA 
identified by microarray were also validated via qRT-
PCR, as previously described [22].

RNA‑Sequencing for mRNA expression data in the ROS/
MAP
RNA-Seq data generated from brain tissue in the DLPFC 
were downloaded from the AMP-AD Knowledge Portal 
on Synapse (syn8456638) (https:// www. synap se. org). The 
sequencing was performed on the Illumina HiSeq2000 
with 101 base pair paired-end reads, targeting a coverage 
of 50 million paired reads, as detailed in previous stud-
ies [24, 29]. The reads were aligned to the human genome 
reference (hg19) using Tophat [30] with Bowtie1 as the 
aligner [31]. The expression levels of transcripts were 
estimated using the Gencode V14 annotation with the 
RSEM package [32]. FPKM (fragments per kilobase of 
transcript per million mapped reads) normalization was 
applied to the mRNA expression data. The log2 counts-
per-million (logCPM) values generated in 634 sub-
jects were finally used for further analysis, as previously 
described [33].

Assessment of CERAD, Braak, and cognition in ROS/MAP
Definite or probable Alzheimer’s disease relative to pos-
sible or no Alzheimer’s disease was based on CERAD, 
which is a semiquantitative measure of neuritic plaques, 
as previously reported [20, 34, 35]. Braak scores [19] ≧ 
4 relative to ≦ 3 were used to dichotomize neurofibril-
lary tangles as previously reported [34, 35]. We used the 
term “CERAD positive” for “probable” or “definite” Alz-
heimer’s disease, and “CERAD negative” for “possible” or 
“no” Alzheimer’s disease based on CERAD. We also used 
the term “Braak positive” for Braak scores ≧ 4, and “Braak 
negative” for Braak scores ≦ 3. Cognitive performance 
was assessed longitudinally by Z-scores of global cogni-
tive performance averaged across 19 tests spanning five 
cognitive domains, including episodic memory, work-
ing memory, semantic memory, perceptual speed, and 
visuospatial ability/perceptual orientation, as previously 
reported [36].

Co‑expression miRNA network construction
A scale-free miRNA co-expression network was con-
structed using the WGCNA package based on miRNA 
expression profiles [14]. The “pickSoftThreshold” func-
tion was used to select an appropriate soft threshold 
power β that achieves a scale-free topology, and the 
network adjacency matrix was calculated based on co-
expression similarity. Unsupervised hierarchical clus-
tering with the dynamic tree cut procedure was used to 
identify modules of co-expressed miRNAs. Each module 
was represented by a module eigengene (ME), which was 
defined as the first principal component of the expression 
matrix representing the overall level of miRNA expres-
sion within each module.

Identification of hub miRNAs in an AD‑associated network 
module and their target genes
The “softConnectivity” function was used to identify the 
top 10 hub miRNAs with the highest intramodular con-
nectivity according to the topological overlap matrix 
(TOM) based on intramodular connectivity measures. 
The target genes of these hub miRNAs were predicted 
using the TargetScan [37] and the miRDB [38] databases, 
which provide both predicted and experimentally verified 
interaction information between miRNAs and genes. The 
overlapping target genes between the two databases were 
selected for further analysis.

Association of AD‑associated hub miRNAs with their target 
genes using RNA‑Seq data in the ROS/MAP
After target genes of AD-associated hub miRNAs were 
selected, brain tissue-based RNA-Seq data analyses were 
performed to assess whether the predicted target genes 
were associated with expression levels of their corre-
sponding miRNAs.

Pathway‑based enrichment analysis of target genes 
and miRNAs
Gene-set enrichment analysis was performed using the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) online tool [39] to identify the bio-
logical pathways of target genes significantly associated 
with the expression levels of AD-associated hub miRNAs. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[40] and Gene ontology (GO) biological processes (BP) 
[41] pathways were used.

miRNA-set enrichment analysis was also performed 
using the TAM 2.0 [42] tool to characterize the func-
tional annotations of the miRNA set within each module 
through overrepresentation analysis. miRNA-set enrich-
ment analysis was restricted to pathways containing 3 or 
more miRNAs. The most strongly associated biological 
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processes for the involvement of the central nervous sys-
tem were selected for each module. Bonferroni correc-
tion [43] was applied to adjust for multiple testing.

Consensus network construction
A consensus miRNA co-expression network was con-
structed across the ROS/MAP and GEO (GSE46579) 
datasets for replication using the WGCNA package [14]. 
The “blockwiseConsensusModules” function was used to 
construct modules in the consensus network based on 
pairwise miRNA dissimilarity measures. The importance 
of a miRNA in a network module was determined by 
kME, defined as the strength of the correlation of expres-
sion levels of a miRNA with the ME. Hub miRNAs in a 
consensus module were defined as those miRNAs with 
an absolute kME value greater than 0.7.

The “modulePreservation” function was used to con-
struct a preservation network based on the correlation 
between all pairs of consensus ME values across the two 
networks from the ROS/MAP and GEO datasets. A den-
sity (D) of the eigengene network, defined as the average 
scaled connectivity, was estimated to discover changes 
in preservation patterns across each consensus module. 
The D value close to 1 indicates strong preservation of 
the correlation patterns between all pairs of eigengenes 
across the two networks [44, 45].

Statistical analysis
For differential expression analysis, logistic regression 
models were used to investigate the association of miR-
NAs expression levels with AD, CERAD, and Braak stage. 
For co-expression miRNA network analysis, logistic 
regression models were used to evaluate the association 
of ME values of network modules with AD and to iden-
tify AD-associated network modules. Linear regression 
models were used to perform the association analysis 
of miRNA expression levels and ME values of network 
modules with global cognitive performance at the last 
visit, while linear mixed effects models were used to 
investigate their association with longitudinal changes of 
global cognitive performance.

For differential expression analysis using RNA-Seq data 
of the target genes identified as significantly associated 
with expression levels of AD-associated hub miRNAs, 
logistic regression models were used to investigate the 
association between expression levels of the target genes 
and AD.

Covariates in the association analysis with AD and neu-
ropathological markers included age, sex, study (ROS 
or MAP), RNA integrity numbers, and post-mortem 
interval. For the association analysis with cognitive per-
formance, education was included along with the afore-
mentioned covariates. The false discovery rate (FDR) 

correction was used to adjust for multiple testing with 
the Benjamini–Hochberg procedure [46] unless other-
wise specified.

The STREAMLINE tool [47], a machine learning 
approach using penalized logistic regression, was used 
to investigate the classification performance of AD-
associated hub miRNAs in differentiating AD from NCI. 
This approach was chosen to reduce the effect of mul-
ticollinearity on feature selection [48]. The data were 
randomly divided into 70% used for training the model 
and 30% used for testing, with a 10-fold cross-validation 
procedure. The classification performance of five dif-
ferent models was evaluated using the receiver operat-
ing characteristic (ROC) curve and the area under the 
receiver operating characteristic curve (AUC). Train-
ing features in Model 1 included age, sex, and apolipo-
protein E (APOE) ε4 carrier status; training features 
in Model 2 included five AD-associated hub miRNAs; 
training features in Model 3 included age, sex, APOE 
ε4 carrier status, and five AD-associated hub miRNAs; 
training features in Model 4 included all 309 miRNAs, 
and training features in Model 5 included age, sex, APOE 
ε4 carrier status, and all 309 miRNAs. Paired t-tests were 
performed to compare the AUC results for the different 
models [49].

All statistical analyses were conducted using R version 
4.2.0, and statistical significance was set at a P-value of 
0.05 after adjusting for multiple comparisons. Figure  1 
shows a workflow of all analysis steps used in this study.

Results
The ROS/MAP cohorts with miRNA consisted of 702 
participants, including 102 NCI and 177 AD, with a 
median age of 88.5 at death and 64.1% females. The GEO 
(GSE157239) dataset consisted of 16 participants, includ-
ing 8 NCI and 8 AD, having miRNA data, with a median 
age of 81.5 at death and 68.8% females. Table  1 and 
Table  S1 show the demographic characteristics of these 
individuals.

Differential expression analysis of miRNAs
Differential expression analysis was performed on 309 
miRNAs in 177 AD and 102 NCI subjects from ROS/
MAP. Fifteen miRNAs were found to be significantly 
associated with AD (Fig.  2). Notably, expression levels 
of miR-129-5p and miR-132 were significantly lower in 
both the CERAD and Braak positive groups (Fig.  2 and 
Table S2). Additionally, higher expression levels of miR-
129-3p, miR-129-5p, miR-132, miR-133b, miR-410, miR-
433, and miR-504, as well as lower expression levels of 
miR-100, miR-19b, miR-29a, miR-335, miR-519a, and 
miR-99b, were significantly associated with better global 
cognitive performance at the last visit. Furthermore, 
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higher expression levels of miR-129-3p, miR-129-5p, and 
miR-132 showed significant associations with slower lon-
gitudinal decline of global cognition.

Co‑expression miRNA network analysis
Modules associated with AD, CERAD, Braak, and cognition
A scale-free co-expression network was constructed 
based on the miRNA expression profiles of 702 

subjects using WGCNA. A cutting tree height of 11 
was selected to eliminate outliers, and 663 individu-
als under the cutting tree height were kept for further 
analysis. A soft thresholding power value of β = 4 was 
selected, and four network modules were identified 
(Figure  S1). The M0 module consisted of miRNAs not 
assigned to any other modules and was excluded in 
further analysis. Lower ME values of the M3 module 

Fig. 1 Schematic overview of the workflow of our analysis. AD Alzheimer’s dementia, MAP Memory and Aging Project, miRNAs microRNAs, mRNAs 
messenger RNAs, NCI no cognitive impairment, ROS Religious Orders Study, 3′‑UTR 3′‑untranslated region
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Table 1 Demographic information of participants from the ROS/MAP cohort

Values are n (%), unless indicated otherwise. Among a total of 702 participants with miRNA data, 177 subjects met criteria for AD and 102 met criteria for NCI based on 
neuropathological and clinical data

AD Alzheimer’s dementia, MAP Memory and Aging Project, miRNAs microRNAs, NCI no cognitive impairment, ROS Religious Orders Study
a Data are presented as median (interquartile range)
b The Mann–Whitney U test or chi-square test was used to determine the P value for comparisons between AD and NCI groups, as appropriate

NCI
(n = 102)

AD
(n = 177)

Total
(n = 702)

P value b

Female 54 (52.9) 126 (71.2) 449 (64.1) 0.002

Age at death in years a 85.0 (78.8–89.0) 90.0 (87.4–90.0) 88.5 (84.1–90.0) < 0.001

Study

 ROS 53 (52.0) 93 (52.5) 381 (54.4)

 MAP 49 (48.0) 84 (47.5) 320 (45.6) 0.926

Global cognitive Z scores at the last visit a 0.10 (‑0.25–0.36) ‑0.35 (‑0.93–0.06) ‑0.17 (‑0.56–0.19) < 0.001

Slope of global cognitive Z scores a ‑0.03 (‑0.13 – 0.02) ‑0.17 (‑0.30 – ‑0.08) ‑0.09 (‑0.22 – ‑0.01) < 0.001

RNA integrity numbers a 7.3 (6.0–8.0) 6.7 (5.4–7.4) 6.9 (5.6–7.7) 0.001

Post‑mortem interval in hours a 6.3 (4.8–8.6) 5.8 (4.2–8.3) 5.8 (4.3–8.5) 0.124

Fig. 2 Heatmap of association analysis results of miRNAs with diagnosis and clinical and pathological traits. The numbers represent the logistic 
and linear regression coefficients of association between miRNAs and traits. Stars indicate significant associations with FDR‑corrected p value < 
0.05. Red colors represent positive correlations, while blue colors denote negative correlations. The darker the color, the stronger the association. 
AD Alzheimer’s dementia, CERAD Consortium to Establish a Registry for Alzheimer’s Disease, FDR false discovery rate, miRNAs microRNAs. Note: 
significance stars indicating the p values of the correlations adjusted for multiple comparisons. *P‑value < 0.05. **P‑value < 0.01. *** P‑value < 0.001
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were significantly associated with a greater likelihood 
of AD and CERAD, but not with Braak stage. Moreo-
ver, lower ME values of the M3 module were associ-
ated with lower global cognitive performance at the last 

visit and faster longitudinal decline of global cognition 
(Fig.  3 and Table  S3). Enrichment analysis of miRNAs 
revealed that M3 was highly associated with glucose 
metabolism, and M1 and M2 were strongly linked to 

Fig. 3 Association analysis results of module eigengenes with diagnosis and clinical and pathological traits. A The numbers represent the logistic 
and linear regression coefficients of association between module eigengenes and traits. Stars indicate significant associations with FDR‑corrected 
p value < 0.05. Red colors represent positive correlations, while blue colors denote negative correlations. The darker the color, the stronger 
the association. B Violin and box plots represent the M3 module eigengene values in the diagnosis, amyloidopathy, and tauopathy groups 
from the ROS/MAP cohort. C The x‑axis represents years before the last clinical evaluation, while the y‑axis indicates global cognitive Z scores. 
The two lines represent the different slopes of global cognitive changes of subjects with 1st quartile (green color) versus 4th quartile (red color) 
stratified by ME values of AD‑associated M3 module. AD Alzheimer’s dementia, CERAD Consortium to Establish a Registry for Alzheimer’s Disease, 
FDR false discovery rate, MAP Memory and Aging Project, ME module eigengene, NCI no cognitive impairment, ROS Religious Orders Study. Note: 
significance stars indicating the p values of the correlations adjustment for multiple comparisons. *P‑value < 0.05. **P‑value < 0.01
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innate immunity and embryonic development, respec-
tively (Table S4).

Hub miRNAs associated with AD, CERAD, Braak, 
and cognition
In the AD-associated glucose metabolism pathway-
enriched M3 module, the top 10 miRNAs with the 
highest TOM-based intramodular connectivity were 
identified as hub miRNAs (Fig.  4). Among these 10 
miRNAs, the strongest finding was for miR-129-5p, 
which was inversely related to AD, CERAD, and Braak 
and directly related to level of and change in cognition. 
Higher expression levels of miR-433 and miR-221 were 
inversely associated with the likelihood of AD, while only 
miR-433 was associated with better cognition and slower 
cognitive decline (Fig.  4 and Table  S5). By contrast, 
higher expression levels of miR-200a and miR-1260 were 
related to a greater likelihood of AD, higher CERAD and 
lower cognition, but not with Braak or cognitive decline. 
Finally, miR-744 was only associated with lower global 
cognition.

Target genes associated with AD for AD‑associated hub 
miRNAs
Target genes for the five AD-associated hub miRNAs 
(miR-129-5p, miR-433, miR-1260, miR-200a, and miR-
221) were obtained from the miRDB and TargetScan 

databases, resulting in 1417, 614, 567, 1526, and 1164 
genes from the miRDB database, and 732, 1391, 5239, 
4128, and 5878 genes from the TargetScan database; 406, 
198, 512, 892, and 769 overlapping target genes for these 
five miRNAs, respectively, between the two databases 
were then identified (for reference, target genes for the 
hub miRNAs identified in the M1, M2, and M3 modules 
were listed in the Supplementary Additional file).

RNA-Seq data analysis identified 189, 101, 310, 591, 
and 73 target genes as significantly associated with 
expression levels of corresponding miRNAs for miR-
129-5p, miR-433, miR-1260, miR-200a, and miR-221, 
respectively. Furthermore, RNA-Seq data analysis iden-
tified a total of 22, 3, 12, 30, and 25 target genes as sig-
nificantly associated with AD for miR-129-5p, miR-433, 
miR-1260, miR-200a, and miR-221, respectively (Table 2).

Pathway‑based enrichment analysis of target genes
The KEGG pathway-based enrichment analysis revealed 
that the target genes identified through RNA-Seq 
analysis for the five AD-associated hub miRNAs were 
mainly involved in the following pathways: axon guid-
ance, erythroblastic leukemia viral oncogene homolog 
(ErbB) signaling pathway, mitogen-activated protein 
kinase (MAPK) signaling pathway, gamma-aminobutyric 
acid-ergic (GABAergic) synapse, autophagy, 5′ adeno-
sine monophosphate-activated protein kinase (AMPK) 

Fig. 4 Association analysis results of top 10 candidate hub miRNAs with diagnosis and clinical and pathological traits. A The numbers represent 
the logistic and linear regression coefficients of association between miRNAs and traits. Stars indicate significant associations with FDR‑corrected 
p value < 0.05. Red colors represent positive correlations, while blue colors denote negative correlations. The darker the color, the stronger 
the association. B, C The x‑axis represents years before the last clinical evaluation, while the y‑axis indicates global cognitive Z scores. The two 
lines represent the different slopes of global cognitive changes of subjects with 1st quartile (green color) versus 4th quartile (red color) stratified 
by expression levels of miR‑129‑5p (B) and miR‑433 (C), respectively. AD Alzheimer’s dementia, CERAD Consortium to Establish a Registry 
for Alzheimer’s Disease, FDR false discovery rate, miRNAs microRNAs. Note: significance stars indicating the p values of the correlations adjustment 
for multiple comparisons. *P‑value < 0.05. **P‑value < 0.01. ***P‑value < 0.001
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signaling pathway, mammalian target of rapamycin 
(mTOR) signaling pathway, and glutamatergic synapse 
(Table 3). The GO-BP pathway-based enrichment analy-
sis showed that target genes identified through RNA-Seq 
analysis for the five AD-associated hub miRNAs were 
enriched in the following pathways: protein phosphoryla-
tion, nervous system development, chromatin organiza-
tion, and neuron migration (Table S6).

Consensus network analysis using miRNA profiles from two 
independent datasets
Consensus modules and a preservation network were 
constructed to understand changes in preservation 

patterns across consensus modules. Additionally, hub 
miRNAs in consensus modules were selected to assess 
the replication of the five AD-associated hub miRNAs, 
identified in the ROS/MAP dataset, within an independ-
ent dataset.

Identification of consensus network modules
The construction of miRNA co-expression network 
modules was performed separately for the discovery and 
replication datasets, and the consensus modules were 
identified using the consensus dissimilarity measures in 
the average linkage hierarchical clustering method. A soft 
thresholding power value of β = 4 was selected for each 

Table 2 Results of differential expression analysis of AD‑associated target genes of five AD‑associated hub miRNAs between NCI and 
AD. Here we showed only significantly differentially expressed target genes in AD

AD Alzheimer’s dementia, FDR false discovery rate, miRNAs microRNAs, NCI no cognitive impairment
a  Adjusted p value using FDR

miR‑129‑5p miR‑433 miR‑1260 miR‑200a miR‑221

Target genes P value a Target genes P value a Target genes P value a Target genes P value a Target genes P value a

PIEZO2 0.001 BRWD1 0.036 SAMD4A 0.005 SLC6A9 < 0.001 DYNC1LI2 0.002

NRN1 0.015 NSMCE1 0.036 NRN1 0.022 C17orf58 0.005 MLIP 0.012

ZNF704 0.015 ST8SIA4 0.036 MID1IP1 0.022 SLFN5 0.025 BRWD1 0.012

COX15 0.030 LGMN 0.023 TNS3 0.025 NRIP2 0.012

CHD7 0.030 TBC1D24 0.023 SLC38A2 0.025 ZFR2 0.012

PCDH8 0.030 LRRC73 0.033 RUFY2 0.027 ZNF652 0.012

TOMM40 0.030 GOLGA8B 0.033 CHP1 0.035 EML6 0.012

SMARCC1 0.030 CCDC113 0.036 BRWD1 0.035 LPAR1 0.012

RAB3B 0.030 RHNO1 0.041 LRRC8B 0.035 KIF1C 0.012

TMEM67 0.030 LIMD2 0.041 STAT4 0.035 RAB3B 0.014

USP13 0.030 BCKDK 0.044 DAP3 0.035 PTP4A2 0.016

SEPHS1 0.030 TRAPPC6A 0.044 TCERG1 0.035 NAP1L5 0.016

NRXN3 0.035 TATDN3 0.035 AKAP5 0.017

PAK3 0.038 MTF2 0.035 NXPH1 0.023

IGSF3 0.039 SLC20A1 0.038 PLXNC1 0.023

TSPYL4 0.039 ZNF652 0.041 PCDHGC5 0.023

SKP1 0.039 SLC4A1AP 0.043 NDFIP1 0.023

ZDHHC23 0.042 BTF3L4 0.043 ATP9B 0.023

GRM7 0.042 FBXL2 0.043 C11orf87 0.023

C2orf88 0.042 PCDH8 0.043 CAMK4 0.024

CKAP4 0.046 GULP1 0.043 COPS7A 0.026

CBX4 0.049 MFN1 0.043 PGAP1 0.030

GRHL1 0.043 PPP1R14C 0.030

FOXJ1 0.043 LRFN2 0.036

KIF1C 0.043 STMN1 0.048

CHD7 0.043

NRIP3 0.047

RHEB 0.049

MBTPS2 0.049

SEPT8 0.049
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dataset, and four consensus modules were identified (Fig-
ure S2). All consensus modules had counterparts in both 
datasets, indicating that the consensus module structures 
in two datasets were similar (Figure  S3). The consensus 
CM0 module consisted of miRNAs not assigned to any 
other modules.

Preservation of consensus modules
A consensus ME network was constructed to investigate 
whether expression patterns of modules were correlated 

with each other (Figure  5A, B). The preservation net-
works of the correlations of the consensus ME pairs 
between the discovery and replication datasets were fur-
ther constructed to understand the changes in preserva-
tion patterns of two datasets (Figure 5C). The D value of 
the preservation networks between all pairs of the con-
sensus ME across the two networks was 0.88 (Figure 5D), 
indicating that these modules were well preserved in 
their expression patterns across the two independent 
datasets.

Table 3 KEGG pathway analysis of target genes of five AD‑associated hub miRNAs (miR‑129‑5p, miR‑1260, miR‑200a, miR‑433, and 
miR‑221)

AD Alzheimer’s dementia, AMPK 5′ adenosine monophosphate-activated protein kinase, ErbB erythroblastic leukemia viral oncogene homolog, GABAergic gamma-
aminobutyric acid-ergic, KEGG Kyoto Encyclopedia of Genes and Genomes, MAPK mitogen-activated protein kinase, miRNAs microRNAs, mTOR mammalian target of 
rapamycin
a Adjusted p value from Bonferroni correction

KEGG pathway Number of target genes belonging to the 
pathway

Fold enrichment P value a

Axon guidance 31 2.931 < 0.001

ErbB signaling pathway 20 4.048 < 0.001

MAPK signaling pathway 35 1.994 0.012

GABAergic synapse 16 3.093 0.014

Autophagy ‑ animal 21 2.562 0.015

AMPK signaling pathway 19 2.702 0.017

mTOR signaling pathway 22 2.426 0.020

Glutamatergic synapse 18 2.693 0.032

Fig. 5 Construction of consensus module eigengene networks. A, B Heatmaps showing the adjacencies of eigengene for each of the eigengene 
networks (A, ROS/MAP cohort; B, GSE157239 cohort). Each row and column corresponds to an eigengene labeled by the consensus module 
or diagnosis. Red colors represent positive correlations, while blue colors denote negative correlations. The darker the color, the stronger 
the association. C Adjacency heatmap displaying the pairwise preservation between the two consensus eigengene networks. Each row 
and column corresponds to an eigengene labeled by the consensus module or diagnosis. Red colors represent adjacency. The darker the color, 
the higher the adjacency. D Bar plot showing the preservation of correlation of consensus module eigengene between the two networks. 
Each colored bar corresponds to the eigengene of the associated consensus module. The height of the bar (y‑axis) represents the eigengene 
preservation measure. The D value indicates the mean preservation of eigengene networks across the datasets. The high density value of D (= 
0.88) denotes high overall preservation between the two networks. AD Alzheimer’s dementia, CM consensus module, M module, MAP Memory 
and Aging Project, ROS Religious Orders Study
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Identification of AD‑associated consensus modules 
across two independent datasets and replication 
for AD‑associated hub miRNAs
Figure  6 shows the module-clinical trait heatmaps, 
indicating the associations between AD and four con-
sensus modules across two independent datasets. 
Lower ME values of the consensus CM2 and CM3 
modules were significantly associated with AD in 
the ROS/MAP dataset. In the GEO dataset, although 
the association between ME values of the consensus 
CM2 and CM3 modules and AD was not significant, 
the effect sizes and association directions were con-
sistent with those in the ROS/MAP dataset. Among 
the five AD-associated hub miRNAs identified in the 
discovery dataset (ROS/MAP), miR-129-5p, miR-
221, and miR-200a were included in the CM2 mod-
ule (Table  S7), but none of the miRNAs were present 
in the CM3 module (Table  S8). Notably, miR-129-5p 
and miR-221, identified as AD-associated hub miR-
NAs in the ROS/MAP cohort, were also hub miRNAs 
in an independent replication dataset (GEO) because 
their kME values in the replication dataset (GEO) were 
higher than 0.7 (Table 4 and Table S8). The correlation 
analysis showed that the M3 module from the ROS/
MAP dataset and the consensus CM2 module from the 
combined ROS/MAP and GEO datasets were strongly 
correlated (correlation coefficient = 0.88) (Figure S4). 

Enrichment analysis of miRNAs identified glucose 
metabolism as a significantly enriched biological path-
way in both M3 and CM2 (Table S9).

Fig. 6 Association analysis results of consensus module eigengenes with diagnosis in the ROS/MAP cohort, GEO (GSE157239) cohort, 
and across ROS/MAP and GEO datasets. A, B Heatmaps showing module‑trait relationships in the ROS/MAP (A) and GEO (GSE157239) (B) cohorts. 
C Heatmaps showing consensus module‑trait relationships across the ROS/MAP and GSE157239 cohorts. The numbers in the table indicate 
the coefficients (top) and its p value (bottom) of association between consensus module eigengenes and diagnosis. Red colors represent positive 
correlations, while green colors denote negative correlations. The darker the color, the stronger the association. Missing (NA) entry indicates 
the failure of forming a consensus because the directions of correlations in the ROS/MAP and GSE157239 datasets are opposite. AD Alzheimer’s 
dementia, CM consensus module, GEO Gene Expression Omnibus, M module, MAP Memory and Aging Project, NA not applicable, ROS Religious 
Orders Study

Table 4 List of miRNAs with kME > 0.7 for the CM2 module in 
the replication dataset

kME and p values represent the correlation and significance levels, respectively, 
between the miRNA expression levels and module eigengene of the consensus 
CM2 module. The miRNAs with kME > 0.7 in the replication dataset (GEO) are 
listed for the CM2 module

CM consensus module, FDR false discovery rate, GEO Gene Expression Omnibus, 
ME module eigengene, miRNAs microRNAs
a Adjusted p value using FDR

miRNA kME P  valuea

miR‑744 0.946 1.02 ×  10‑6

let‑7e 0.892 4.60 ×  10‑5

miR‑485‑3p 0.887 4.60 ×  10‑5

miR‑769‑3p 0.883 4.60 ×  10‑5

miR‑491‑5p 0.881 4.60 ×  10‑5

miR‑331‑3p 0.863 9.46 ×  10‑5

miR‑107 0.850 1.51 ×  10‑4

miR‑129‑5p 0.833 2.58 ×  10‑4

miR‑221 0.827 2.77 ×  10‑4

miR‑129‑3p 0.825 2.77 ×  10‑4

miR‑770‑5p 0.823 2.77 ×  10‑4

miR‑708 0.807 4.55 ×  10‑4

miR‑487a 0.753 1.99 ×  10‑3

miR‑125a‑5p 0.716 4.42 ×  10‑3
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Machine learning analysis for AD classification
A machine learning approach using penalized logistic 
regression for the classification of AD from NCI was used 
to evaluate five different classification models (Table  5). 
The results of 10-fold cross-validation are presented in 
Figure 7. Model 1, including age, sex, and APOE ε4 car-
rier status, achieved a mean AUC value of 0.807 with a 
standard deviation of 0.103 (Figure 7A). The mean AUC 
value of Model 3, obtained by adding five AD-associ-
ated hub miRNAs to Model 1, significantly increased to 
0.870 with a standard deviation of 0.061 (P value = 0.022) 
(Figure  7C), which was comparable to that of Model 
5, obtained by adding all 309 miRNAs to Model 1 (Fig-
ure 7E). The mean AUC values of Model 2, including only 
five AD-associated hub miRNAs, and Model 4, including 
all 309 miRNAs, were 0.740 and 0.815 with a standard 
deviation of 0.068 and 0.052, respectively (Figure 7B, D).

Discussion
In this study, we performed a network-based analy-
sis of miRNAs and identified a network module (glu-
cose metabolism pathway-enriched M3) that showed 
significant associations with AD, level of and change 
in cognition, and CERAD and Braak pathologic traits 
of Alzheimer’s disease. In the AD-associated glucose 
metabolism pathway-enriched M3 module, we identified 
five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-
200a, and miR-221) as significantly associated with AD, 
neuropathologic markers, and/or cognition, with miR-
129-5p being the strongest and associated with all AD 
traits. Gene-set enrichment analysis of the target genes of 
these five AD-associated hub miRNAs revealed enrich-
ment of ErbB, MAPK, AMPK, and mTOR signaling path-
ways. In the replication analysis using an independent 
additional dataset, we identified AD-associated CM2 and 
CM3 modules. Remarkably, miR-129-5p and miR-221, 
identified as AD-associated hub miRNAs in the discov-
ery cohort, were also found to be hub miRNAs in the 

replication cohort. Preservation analysis showed consist-
ent expression patterns of the consensus modules across 
two independent datasets.

This study identified AD-associated miRNAs through 
network-based analysis, not detected in the miRNA-
based differential expression analysis. Moreover, our 
findings shed light on the association between AD-asso-
ciated miRNAs and longitudinal changes of cognition.

Among five AD-associated hub miRNAs, we found that 
greater miR-129-5p was associated with a lower likeli-
hood of AD, better cognition, slower cognition decline, 
and lower CERAD and Braak pathologic traits of Alz-
heimer’s disease, which aligns with previous studies [6, 
50–53]. miR-129-5p has been suggested to play roles in 
Alzheimer’s disease, potentially involving the regulation 
of autophagy [51], neuroinflammation [52, 54, 55], and 
neuronal cell death [53–55] through targeting amyloid 
precursor protein (APP) [51], high-mobility group box 1 
(HMGB1) [55], and yes-associated protein 1 (YAP1) [53] 
genes. In particular, miR-129-5p exhibits specific expres-
sion in brain tissues, suggesting a potential role for this 
miRNA in nervous system function [56]. Within the neo-
cortex, miR-129-5p shows enrichment in glutamatergic 
projection neurons compared to GABAergic interneu-
rons and GABAergic neurons [57, 58]. For miR-221, we 
observed decreased expression levels in AD but did not 
find any associations with neuropathological markers or 
cognition, which aligns with the study by Manzine et. al. 
[59]. For miR-200a, we observed increased expression 
levels in AD, consistent with previous studies [50, 60–64], 
highlighting its role in the Aβ-induced neuronal apopto-
sis and cell cycle deregulation [61–64]. Interestingly, we 
also identified a novel association between higher miR-
200a expression levels and worse cognition. For miR-
433, we observed decreased expression levels in AD and 
its association with cognition but not neuropathological 
markers, which aligns with the study by Wang et al. [65]. 
Lastly, miR-1260 exhibited increased expression levels in 

Table 5 Mean AUC and standard deviation of machine learning models using penalized logistic regression

10-fold cross validation was used to investigate and compare the classification performance of five different machine learning models for differentiating AD from NCI. 
The machine learning model, mean AUC, and standard deviation of the AUC are presented

AD Alzheimer’s dementia, APOE apolipoprotein E, AUC  area under the curve, miRNAs microRNAs, NCI no cognitive impairment

Model Training features Mean AUC Standard 
deviation of 
AUC 

1 Age + sex + APOE ε4 carrier status 0.807 0.103

2 Five AD‑associated hub miRNAs 0.740 0.068

3 Age + sex + APOE ε4 carrier status + five AD‑associated hub miRNAs 0.870 0.061

4 All 309 miRNAs 0.815 0.052

5 Age + sex + APOE ε4 carrier status + all 309 miRNAs 0.867 0.057
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AD, consistent with previous studies [50, 64]. Notably, 
increased expression levels of miR-1260 were associ-
ated with CERAD pathologic traits and worse cognition, 
which is another novel finding from our study.

Our pathway-based enrichment analysis revealed 
that the AD-associated predicted target genes for the 
five AD-associated hub miRNAs were related to ErbB, 
AMPK, MAPK, and mTOR signaling pathways. ErbB, 
involved in various biological processes, such as myeli-
nation, neurite outgrowth, cell proliferation, differentia-
tion and protection against apoptosis, is downregulated 
in Alzheimer’s disease due to Aβ-mediated neurotoxic-
ity [66–68]. AMPK, which regulates cell polarity, apop-
tosis, cell migration, and synaptic plasticity, is activated 
in Alzheimer’s disease, contributing to tauopathy, syn-
aptotoxicity, and dendritic deficits [69–72]. AMPK 
pathways also play a significant role in regulating glu-
cose balance and metabolism in the brain [73–75], 
emphasizing their relevance to the glucose metabolism 

of the AD-associated miRNAs’ module functions in our 
study. MAPK, a crucial regulator of many cellular bio-
logical processes, including autophagy, is significantly 
upregulated in AD due to Aβ production and oxida-
tive stress [76–78]. Lastly, mTOR, a conserved serine/
threonine protein kinase, is dysregulated in Alzheimer’s 
disease through Aβ-induced autophagy impairment, 
endoplasmic reticulum stress, cell apoptosis, and mito-
chondrial dysfunction [79–82].

The machine learning analysis for classification of AD 
from NCI showed that five AD-associated miRNAs sig-
nificantly improved the performance of demographic 
information and APOE ε4 carrier status for classification 
of AD from a mean AUC value of 0.807 to that of 0.870.

miRNAs have emerged as promising therapeutic tar-
gets in Alzheimer’s disease due to their crucial role in 
regulating the expression levels of target genes involved 
in Alzheimer’s disease pathogenesis [10, 83, 84]. Cur-
rently, two types of miRNA targets, miRNA mimics and 

Fig. 7 The ROC curves and mean AUC of machine learning approach using penalized logistic regression. Sensitivity is on the y‑axis and 1‑specificity 
is on the x‑axis. 10‑fold cross validation was used to investigate and compare the classification performance of five different classification models 
for differentiating AD from NCI. The gray zone around the mean ROC curve represents ± 1 standard deviation. Five different classification models 
are shown per following training features. A Training features include age, sex, and apolipoprotein E (APOE) ε4 carrier status. B Training features 
include five AD‑associated hub miRNAs. C Training features include age, sex, APOE ε4 carrier status, and five AD‑associated hub miRNAs. D Training 
features include all 309 miRNAs. E Training features include age, sex, APOE ε4 carrier status, and all 309 miRNAs. AD Alzheimer’s dementia, AUC area 
under the curve, miRNAs microRNAs, NCI no cognitive impairment, ROC receiver operating characteristic
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anti-miRNAs, are being explored for therapeutic inter-
ventions in Alzheimer’s disease [10, 77].

Our study has several limitations. Firstly, the limited 
sample size of the replication cohort might have con-
tributed to the decreased statistical power for replication 
analysis. Further studies with larger samples are needed 
to validate our findings. Secondly, the replication data-
set lacks neuropathological markers and cognitive infor-
mation, limiting our investigation for associations with 
neuropathology and cognition to the ROS/MAP cohort. 
Thirdly, miRNA expression profiles were generated using 
different brain regions and different microarray platforms 
in the discovery and replication cohorts, which may have 
introduced variability in the results. Lastly, the difference 
in the definitions of the diagnostic groups (NCI and AD) 
in the two datasets may have led to a potential confound-
ing factor in the consensus network analysis.

Conclusions
In summary, our network-based approach identified AD 
pathology and cognition-associated miRNAs. Notably, 
miR-129-5p and miR-221 were replicated in an inde-
pendent dataset. The inclusion of AD-associated miR-
NAs improved the classification performance of AD from 
NCI. This integrative network approach can provide 
insight into AD pathogenesis and highlights these miR-
NAs as diagnostic/prognostic biomarkers and potential 
therapeutic targets for AD. However, further investiga-
tions are necessary to elucidate the underlying mecha-
nisms and validate these findings.
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