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Abstract 

Background Clinical variants of primary progressive aphasia (PPA) are diagnosed based on characteristic patterns 
of language deficits, supported by corresponding neural changes on brain imaging. However, there is (i) considerable 
phenotypic variability within and between each diagnostic category with partially overlapping profiles of language 
performance between variants and (ii) accompanying non‑linguistic cognitive impairments that may be independ‑
ent of aphasia magnitude and disease severity. The neurobiological basis of this cognitive‑linguistic heterogeneity 
remains unclear. Understanding the relationship between these variables would improve PPA clinical/research char‑
acterisation and strengthen clinical trial and symptomatic treatment design. We address these knowledge gaps using 
a data‑driven transdiagnostic approach to chart cognitive‑linguistic differences and their associations with grey/white 
matter degeneration across multiple PPA variants.

Methods Forty‑seven patients (13 semantic, 15 non‑fluent, and 19 logopenic variant PPA) underwent assessment 
of general cognition, errors on language performance, and structural and diffusion magnetic resonance imaging 
to index whole‑brain grey and white matter changes. Behavioural data were entered into varimax‑rotated principal 
component analyses to derive orthogonal dimensions explaining the majority of cognitive variance. To uncover 
neural correlates of cognitive heterogeneity, derived components were used as covariates in neuroimaging analyses 
of grey matter (voxel‑based morphometry) and white matter (network‑based statistics of structural connectomes).

Results Four behavioural components emerged: general cognition, semantic memory, working memory, and motor 
speech/phonology. Performance patterns on the latter three principal components were in keeping with each 
variant’s characteristic profile, but with a spectrum rather than categorical distribution across the cohort. General 
cognitive changes were most marked in logopenic variant PPA. Regardless of clinical diagnosis, general cognitive 
impairment was associated with inferior/posterior parietal grey/white matter involvement, semantic memory deficits 
with bilateral anterior temporal grey/white matter changes, working memory impairment with temporoparietal 
and frontostriatal grey/white matter involvement, and motor speech/phonology deficits with inferior/middle frontal 
grey matter alterations.

Conclusions Cognitive‑linguistic heterogeneity in PPA closely relates to individual‑level variations on multiple behav‑
ioural dimensions and grey/white matter degeneration of regions within and beyond the language network. We 
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further show that employment of transdiagnostic approaches may help to understand clinical symptom boundaries 
and reveal clinical and neural profiles that are shared across categorically defined variants of PPA.

Keywords Alzheimer’s disease, Frontotemporal dementia, Language, Network‑based statistics, Voxel‑based 
morphometry

Background
Primary progressive aphasias (PPA) are a heterogeneous 
group of neurodegenerative disorders of language [1, 2]. 
Three principal clinical variants are described: a seman-
tic variant (svPPA or semantic dementia) displaying pro-
found conceptual knowledge degradation and anterior 
temporal degeneration [3, 4], a nonfluent/agrammatic 
variant (nfvPPA) showing marked agrammatism and/
or motor-speech difficulties with fronto-insular degen-
eration [5], and a logopenic variant (lvPPA) character-
ised by slowed spontaneous speech, phonological errors, 
and poor length-dependent sentence repetition, and left 
temporoparietal degeneration [6]. Within this taxon-
omy, associations between discrete symptoms and brain 
regions suggest relatively straightforward PPA charac-
terisation; however, three emergent issues paint a more 
complex picture. First, PPAs show considerable clinical 
variation within, and overlap between, subtypes, with 
some features shared across distinct variants. Second, it 
is unclear why some patients present with additional, co-
occurring non-linguistic cognitive impairments. Finally, 
we lack a full understanding of the neurobiological 
mechanisms underpinning cognitive-linguistic heteroge-
neity. Tackling these three issues is important to ensure 
diagnostic accuracy, identify potential behavioural/brain 
moderators of PPA disease phenotype, and to improve 
clinical trials design.

Language and semantic tests are central to the clini-
cal characterisation of PPA. While marked and relatively 
selective conceptual knowledge degradation is most 
closely associated with svPPA [3, 7], approximately 40% 
of PPA cases show linguistic profiles falling between 
syndromic boundaries [7–9]. Particularly, disentangling 
nfvPPA from lvPPA on language performance alone can 
be challenging [10, 11]. Difficulties with word-finding, 
multisyllabic repetition, and lexical/phonological pro-
cessing, typical of lvPPA, are also documented in nfvPPA 
[11–15]. Such overlaps emerge from partly dissociable 
neurocognitive substrates. For example, nfvPPA and 
lvPPA show compromised speech production but due 
to differential breakdowns in motor-speech/phonology/
syntax vs. verbal working memory processing regions 
[11, 16–18]. Likewise, naming deficits may relate to dis-
proportionate involvement of semantic (svPPA), phono-
logical/motor-speech (nfvPPA), or phonological/working 
memory processing (lvPPA) regions [19]. These findings 

suggest that language profiles between syndromes vary in 
a graded, not absolute manner, closely reflecting involve-
ment of different neurocognitive systems [7, 18, 20, 21]. 
Capturing such heterogeneity requires sensitive assess-
ments capable of disentangling interdependencies at 
cognitive-neural process-levels to reveal shared/unique 
contributors. Currently, many measures used for PPA 
diagnostics derive metrics of overall aphasia severity and/
or have limited range and depth of assessment [22–24]; 
therefore, they may poorly specify PPA type [10, 25] and 
breakdowns in corresponding neurocognitive systems 
[26]. As such, we require measures better suited to reveal 
process-level breakdowns common/unique to variants.

The second issue pertains to the status of non-lin-
guistic cognition in PPA. Language and communica-
tion difficulties are central to lived experiences of PPA; 
unsurprisingly, these domains have received overwhelm-
ing research focus. Traditionally, non-linguistic difficul-
ties were proposed to emerge either later with disease 
progression or as a by-product of primary aphasia [27]. 
Mounting evidence challenges this hypothesis to show 
general cognitive difficulties in early disease stages and 
at first clinic visit for many patients [28]. For example, 
transmodal semantic degradation in svPPA causes non-
verbal semantic impairments even in early disease stages 
[29]. In nfvPPA, executive deficits often co-occur early 
with motor-speech difficulties [30]. LvPPA frequently 
displays non-linguistic cognitive difficulties such as non-
verbal episodic memory, spatial orientation and working 
memory, and visuospatial processing [31–37]. In lvPPA, 
these deficits can emerge independent of disease severity, 
aphasia magnitude, and relate closely to encroachment 
of pathology into the temporoparietal cortex [20, 38, 39]. 
To understand PPA phenotypic heterogeneity, we need 
deeper investigation into non-linguistic dysfunction, its 
association with aphasia, and neurodegeneration profiles.

Finally, PPAs have been conceptualised as neural-net-
work disorders where neurodegeneration spreads from 
syndrome-specific epicentres to functionally/structurally 
connected regions [40–44]. This account signals the need 
to evaluate concurrent changes to grey and white matter 
integrity to arrive at a comprehensive view of PPA clin-
ico-anatomical changes. While grey matter correlates of 
PPA linguistic profiles are widely investigated [45], white 
matter changes and their relationship with linguistic/
non-linguistic variation in PPA remain less understood. 
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Previous work employing diffusion tensor imaging 
has revealed, in each variant, pronounced white mat-
ter changes to atrophy epicentres and their structurally 
connected regions [46–50]. Structural integrity between 
temporal, prefrontal, and parietal cortices further cor-
relates with emergent language, behaviour, and episodic 
memory difficulties in PPA suggesting that clinical vari-
ability emerges from white matter damage beyond the 
language network [31, 51–55]. Diffusion tensor imaging, 
however, holds severe limitations in modelling cross-
ing fibres (present in > 90% of white matter voxels) [56], 
thereby affecting false negative/positive results and inter-
pretation of surrogate white matter integrity markers 
(e.g., fractional anisotropy, FA) [56, 57]. Addressing these 
limitations, we explored grey/white matter brain changes 
underlying PPA cognitive-linguistic heterogeneity, com-
bining grey matter and contemporary white matter imag-
ing analytic pipelines that reliably model intra-voxel 
directional white matter integrity.

Here, we make three advances towards an improved 
clinico-anatomical understanding of PPA phenotypic 
heterogeneity. First, we used multi-site data from PPA 
specialist clinics and a novel error-based assessment 
(Mini Linguistic State Examination; MLSE), designed 
for PPA, that holds proven sensitivity/specificity (> 95% 
accuracy) in characterising nuanced language profiles 
[58–60]. Compared to global performance scores, error 
patterns offer improved precision in revealing break-
downs in cognitive-linguistic processes and correspond-
ing neural architectures [21, 61–63]. We also included 
an established general cognitive assessment (Adden-
brooke’s Cognitive Examination-III, ACE-III) [64] show-
ing demonstrable sensitivity to subtle non-linguistic 
cognitive changes in PPA [65]. Second, we modelled cor-
responding associations with grey/white matter integrity 
using whole-brain voxel-based morphometry (grey mat-
ter) and structural connectomic network-based statis-
tics (white matter) derived from constrained spherical 
deconvolution-informed whole-brain tractography [57, 
66–69]. The final advance is relating PPA phenotypic 
heterogeneity to breakdowns at the level of neurocogni-
tive systems. Classic methods examining heterogene-
ity (e.g., group difference analyses) inadequately capture 
features cutting across diagnostic entities, within-group 
variability, and atypical/intermediate clinical presenta-
tions. Instead, multiple recent studies across a variety of 
neurological disorders have demonstrated the power of 
transdiagnostic multidimensional phenotypic geometries 
that (i) simultaneously model performance covariance 
patterns across groups/tests to uncover features shared 
between and specific to clinical entities and (ii) can help 
unpick process-level breakdowns contributing to overt 
test performance. This approach opens up a potentially 

powerful way to model clinical feature overlap by assimi-
lating paradigmatic cases of each group, the graded vari-
ations within and between groups, and the many “mixed” 
cases presenting in the clinic, all within one multidimen-
sional “geometry” [7, 20, 21, 70–75]. As these dimensions 
can reflect core neurocognitive systems, positioning 
individuals within this space further aids understanding 
of the blended mixture of damage to key neurocognitive 
systems that give rise to phenotypic similarity/differences 
[76]. In PPA, a number of studies have established this 
approach at the behavioural level [7, 20, 72], and so in 
this study, we take an important new step, by exploring 
how these multidimensional neurocognitive geometries 
map on to underlying neuroanatomy. To make progress 
towards translation and adoption of these frameworks 
into PPA clinical characterisation, we need to understand 
how emergent dimensions map on to common/different 
underlying brain systems. By combining a behaviour-
brain dimensional mapping approach, we advance our 
current understanding of the genesis of PPA clinical het-
erogeneity and associated dysfunction of distributed neu-
rocognitive systems.

Methods
Participants
We included 47 PPA patients (15 nfvPPA, 13 svPPA, and 
19 lvPPA) diagnosed as per current criteria [1] based 
on comprehensive clinical review, neuropsychological 
examination, and structural magnetic resonance imaging 
(MRI). As a comparison group, 43 healthy control par-
ticipants were recruited through the National Institute 
for Health Research “Join Dementia Research” register in 
Cambridge and London, patients’ relatives, and via local 
advertisement. Inclusion criteria for Controls comprised: 
aged between 40 and 75  years, absence of subjectively 
reported cognitive decline and/or a diagnosis of any 
pathological process causing a cognitive disorder, English 
as a first language, normal or corrected-to-normal hear-
ing and vision, and willingness to participate in a study of 
language changes and dementia.

All participants provided written informed consent. 
Study ethics approval was obtained from the London-
Chelsea Research Ethics Committee (REC#16/LO/1735). 
The Universities of London (St. George’s), Cambridge, 
and Manchester sponsored this study.

Cognitive‑linguistic assessment
All participants completed the MLSE (full details of the 
freely available test are in Patel et al. [58]). At the outset, 
we clarify that MLSE performance was not used to clas-
sify patients into their respective PPA categories; classi-
fication was done as per current diagnostic criteria and 
supportive features, as outlined in the previous section.
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The MLSE quantifies the overall profile of language 
impairment based on the number and nature of errors 
made across 11 subtests. These subtests comprise (i) pic-
ture naming, (ii) repetition of syllables and multisyllables, 
(iii) word repetition and single word comprehension, 
(iv) non-word repetition, (v) non-verbal semantic asso-
ciation, (vi) verbal sentence comprehension, (vii) picto-
rial sentence comprehension, (viii) word and non-word 
reading, (ix) sentence repetition, (x) writing, and (xi) 
picture description. On each subtest, the MLSE quan-
tifies accuracy as well as five types of potential errors 
(each reflecting an error typically made by one/more 
variant(s)): motor-speech, semantic, phonological, syn-
tactic, and auditory-verbal working memory errors. 
Resultant scores from these error domains formed the 
main MLSE measures of interest and reflect performance 
across different facets of linguistic competence. An over-
all MLSE score, reflecting global language status, can also 
be derived. In the previous work, the MLSE has been 
shown to have ~ 96% predictive accuracy in discriminat-
ing PPA variants [58], lending confidence in its capacity 
to pick out subtle language changes in these variants. 
PPA patients also completed the ACE-III [64] including 
its subtests of attention, verbal memory, verbal fluency, 
language, and visuospatial functions. Subdomain scores 
from both tests formed behavioural measures of interest.

Imaging
All participants underwent  T1-weighted structural and 
64-direction diffusion-weighted MRI (b-value = 1000  s/
mm2). Full details of image acquisition, stratified by test-
ing site, are in Supplementary Methods.

Whole-brain grey matter changes were indexed using 
voxel-based morphometry (VBM) analyses of structural 
 T1-weighted MRI, integrated into Statistical Paramet-
ric Mapping software (SPM12: Wellcome Trust Centre 
for Neuroimaging, https:// www. fil. ion. ucl. ac. uk/ spm/ 
softw are/ spm12/). A standard pre-processing pipeline 
was implemented involving (i) brain segmentation into 
three tissue probability maps (grey matter, white matter, 
cerebrospinal fluid), (ii) normalisation (using diffeomor-
phic anatomical registration through exponentiated lie 
algebra, DARTEL) [77], (iii) study-specific template crea-
tion using grey matter tissue probability maps, (iv) spa-
tial transformation to Montreal Neurological Institute 
(MNI) space using transformation parameters from the 
corresponding DARTEL template, and (v) image modu-
lation and smoothing using 8-mm full-width-half-maxi-
mum Gaussian kernel to increase signal-to-noise ratio. 
Segmented, normalised, modulated, and smoothed grey 
matter images for all participants were concatenated into 
a four-dimensional grey matter image for VBM analyses.

Diffusion MRI data were preprocessed using a com-
bination of MRtrix3 [78], FSL (https:// fsl. fmrib. ox. ac. 
uk/ fsl/ fslwi ki/), ANTs [79], and synthesized b0 for dif-
fusion distortion correction (Synb0-DISCO) [80] pack-
ages. Standard preprocessing steps implemented within 
MRtrix3 (https:// www. mrtrix. org/) and the BATMAN 
tutorial [81] were followed using commands built into 
MRtrix3 or interfacing with external software packages 
(e.g., FSL v6.0). Full description of pre-processing steps 
are detailed on the MRtrix3 webpage (https:// mrtrix. 
readt hedocs. io/ en/ latest/) and the BATMAN tutorial 
[81]. Briefly, they included (i) Marchenko-Pastur PCA 
denoising [82], (ii) Gibbs ringing artefact correction 
[83], (iii) field map estimation using Synb0-DISCO, 
(iv) motion, eddy, and b0 field corrections using eddy 
[84, 85], (v) B1 bias field correction using N4 correc-
tion [86], (vi) brain mask estimation, (vii) estimation of 
response functions for all tissue classes (grey matter, 
white matter, cerebrospinal fluid) [87], (viii) upsam-
pling to 1.5-mm isotropic voxels and estimation of fibre 
orientation distribution (using single shell three-tissue 
constrained spherical deconvolution) [88], and (ix) 
multi-tissue informed log-domain intensity normalisa-
tion [89].

Whole-brain tractography was performed using 
MRtrix3 with anatomically constrained priors with 
back tracking (using 5ttgen function on T1-weighted 
image) and the iFOD2 algorithm. We obtained 10 mil-
lion streamlines per subject with a maximum stream-
line length of 250  mm. All other parameters were set 
to default. Seed points were determined dynamically 
using spherical-deconvolution informed filtering of 
tractograms (SIFT) model to improve distribution of 
reconstructed streamline density. Tractograms were 
further filtered using SIFT2 to improve quantifica-
tion and biologically meaningful nature of whole-brain 
connectivity.

We constructed connectomes to quantify structural 
interconnectedness between brain regions and examine 
their associations with PPA task performance [90, 91]. 
Structural connectomes were constructed in MRtrix3 
[78] using the Automated Anatomical Labelling-116 atlas 
[92] parcellation image that divides cortical, subcortical, 
and cerebellar regions into 116 nodes. Structural con-
nectomes were constructed using the tck2connectome 
function with default parameters for measures of con-
nectivity strength (streamline count or SC; total number 
of streamlines between two nodes) and integrity (FA; 
degree of overall anisotropy calculated as a weighted 
product of the FA-specific scalar image and SC) (both 
unthresholded to strongest weights) susceptible to 
changes early in the neurodegenerative process (see Sup-
plementary Methods).

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.mrtrix.org/
https://mrtrix.readthedocs.io/en/latest/
https://mrtrix.readthedocs.io/en/latest/
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Statistical analyses
Statistical analyses were conducted using a combina-
tion of RStudio v4.0.3 [93], MATLAB-R2018 [94], and 
MRtrix3 v3.0.4 [78].

Behavioural data analyses

Demographic and neuropsychological variables Binomi-
ally distributed variables were analysed using chi-squared 
tests. For continuous variables, we examined normality 
of distribution using Shapiro–Wilk tests and box-and-
whisker plots, followed by analysis of variance (ANOVA) 
with Sidak corrections for post hoc comparisons for 
small sample sizes. Alpha levels were set at p ≤ 0.05 for 
overall group comparisons and at p ≤ 0.025 for post-hoc 
comparisons. Effect sizes were reported using partial eta-
squared values ( η2p ) with 95% confidence intervals. For 
brevity, we report test statistics for all comparisons in 
Table 1.
Data handling and PCA We used principal compo-
nent analysis (PCA) that enables modelling of shared 
cognitive computations/dimensions underlying task 
performance. First, missing data were tabulated (ACE-
III scores missing for 4 nfvPPA, 3 lvPPA, 2 svPPA) and 
imputed using fourfold cross-validated probabilistic PCA 
(see Supplementary Methods and reference [95]). This 
method robustly handles ~ 25% missing data and guards 
against overfitting [96, 97]. On this “full” dataset, effects 

of testing site were regressed out using linear models and 
residuals were carried forward for subsequent analyses. 
To guide extraction of optimal number of PCA com-
ponents, we used four-fold cross-validated component 
selection methods (10 iterations) [95] with Venetian 
blind sample shuffling at each iteration to control for 
participant order effects (Supplementary Methods). The 
solution with the average lowest root-mean-squared-
error value across iterations, along with standard scree 
plot criteria (eigenvalues ≥  ~ 1.0) [98], guided the number 
of components to be extracted.

The PCA model was considered adequate (Kaiser–
Meyer–Olkin statistic = 0.65). Behavioural data from 
the PPA group (N = 47) were entered into a varimax-
rotated PCA. Orthogonal rotations maximise dis-
persion of loadings, allow little variance to be shared 
between components, and promote a simple structure 
and clear behavioural interpretation of results. Compo-
nents were given labels reflecting the majority of tests 
loading heavily (loadings >|.5|). Labels function as short 
hands referring to high loading tests on components; 
they facilitate ease of reporting, although they by no 
means reflect the entirety of cognitive computations 
captured within components. Component scores were 
subject to group comparisons and correlations with 
symptom duration (two-tailed Pearson’s r) and brain 
changes.

Table 1 Demographic, clinical and neuropsychological assessment performance for all groups

Maximum test scores reported in brackets. For recruitment site, C Cambridge, M Manchester, S St. George’s, University of London. For all groups, mean and standard 
deviations reported; χ 2 = Chi-square value; for magnitude of group effect, exact χ 2/F-statistics, exact p-values (unless p < .001), and effect size ( η2p ) values reported; for 
group effect statistical comparisons, p-values are in bold if p ≤ .05; post hoc alpha threshold set at p ≤ .025

ACE-III Addenbrooke’s Cognitive Examination-III, MLSE Mini Linguistic State Examination, lvPPA logopenic variant primary progressive aphasia, nfvPPA nonfluent 
variant primary progressive aphasia, svPPA semantic variant primary progressive aphasia

svPPA nfvPPA lvPPA Control Magnitude of group effect Direction of post‑hoc effect

N 13 15 19 43 ‑ ‑

Recruitment site (C/M/S) 5/1/7 9/2/4 5/2/12 23/0/20 ‑ ‑

Sex (M: F) 7:6 10:5 6:13 22:21 χ 2(3) = 4.3; p = .22 ‑

Age (years) 66.3 (5.4) 71.2 (5.6) 70.6 (7.7) 61(9.4) F(3,86) = 9.4; p < .001; η2p=.25[.1–1] Control < lvPPA, nfvPPA

Education (years) 18.9 (2.3) 17.2 (1.9) 19.2 (3) 21.1 (3) F(3,86) = 7.9; p < .001; η2p=.22[.09–1] nfvPPA < Controls

Handedness (R: L) 13:0 13:2 18:1 39:4 χ 2(3) = 2; p = .56 ‑

Symptom duration (years) 1.6 (1.9) .7 (.7) 3.3 (5.5) ‑ F(2,44) = 2.5; p = .09; η2p=1[0–1] ‑

Cognitive and language assessments

MLSE total score (100) 73.4 (12.6) 64.2 (24.4) 79.5 (5.1) 98.6 (1.7) F(3,86) = 42.7; p < .001; η2p=.6[.49–1] Patients < Controls

ACE‑III Total (100) 50.8 (19.1) 55 (24.5) 54.8 (8.8) ‑ F(2,35) = .22; p = .8; η2p=.01[0–1] ‑

ACE‑III Attention total (18) 10.7 (4.5) 11.8 (5.2) 14.6(2.1) ‑ F(2,35) = 2.7; p = .07; η2p=.014[0–1] ‑

ACE‑III Memory total (26) 7.8 (6.5) 11.9 (8.2) 9.2 (4.5) ‑ F(2,35) = 1.2; p = .2; η2p=.07[0–1] ‑

ACE‑III Fluency total (14) 3.3 (2.5) 3.4 (3.2) 4.4 (1.8) ‑ F(2,35) = .6; p = .53; η2p=.04[0–1] ‑

ACE‑III Language total (26) 17.5 (6.2) 16.2 (7) 11.6 (3.2) ‑ F(2,35) = 3.4; p = .042; η2p=.16[0–1] svPPA < lvPPA

ACE‑III Visuospatial total (16) 11.3 (3) 11.5 (5.2) 14.8 (1.4) ‑ F(2,35) = 3.5; p = .039; η2p=.17[0–1] lvPPA < svPPA
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Grey matter analyses
Between participant groups, voxel-wise changes in 
grey matter intensity were assessed using independent 
t-tests, with age, total intracranial volume, and testing 
site included as nuisance variables. Sex did not form an 
a priori variable of interest in neuroimaging analyses, 
therefore, we did not include it as a nuisance variable. In 
subsequent follow-up analyses, we further found no sig-
nificant effects of sex on emergent PCs (Component 1: 
t =  − 0.2, p = 0.8; Component 2: t = 0.8, p = 0.3; Compo-
nent 3: t =  − 0.2, p = 0.8; Component 4: t =  − 0.1, p = 0.8), 
therefore, did not include it as a nuisance variable in neu-
roimaging correlation analyses. Clusters were extracted 
using the threshold-free-cluster-enhancement (TFCE) 
method [99] corrected for family-wise error (FWE) at 
p < 0.05 with a cluster threshold of 100 contiguous voxels.

In the PPA group (N = 47), we performed VBM cor-
relation analyses to examine associations between PCA 
component scores and whole-brain changes in grey 
matter intensity. A correlation-only statistical model 
using t-contrasts was implemented. Age, total intracra-
nial volume, and testing site were included as nuisance 
variables. Anatomical locations of statistical significance 
were overlaid on the MNI standard brain and maximum 
co-ordinates in MNI space were indexed. Clusters were 
extracted using a threshold of p < 0.001 uncorrected for 
multiple comparisons with a cluster threshold of 50 con-
tiguous voxels to capture changes in smaller subcortical 
structures.

White matter analyses
We performed network-based statistics (NBS) [100] 
(implemented within MRTrix3) to identify subnetworks 
(connection clusters comprising sets of interconnected 
edges) where SC/FA connectivity statistically differ 
between groups. Briefly, NBS computes independent 
t-test statistics at each edge (i.e., connections between 
two nodes) followed by statistical thresholding to iden-
tify subnetworks (clusters of connected edges) varying 
between groups/associated with a covariate of interest 
[100]. Critical t-values were set at 4, significant subnet-
works were identified using the TFCE method [101] and 
corrected for FWE at p < 0.05. Age and testing site were 
included as nuisance covariates. Sex did not form an a 
priori variable of interest in our analyses, therefore, we 
did not include it as a nuisance variable in any neuroim-
aging analyses.

In the PPA group (N = 47), NBS correlation analy-
ses (t-contrasts) were performed to examine associa-
tions between PCA component scores and whole-brain 
changes in white matter integrity (for SC and FA, sepa-
rately) with age and testing site included as nuisance 
variables. Subnetworks of statistical significance were 

extracted using a threshold of p < 0.001 uncorrected for 
multiple comparisons, overlaid on the MNI standard 
brain with maximum co-ordinates in MNI space, and 
visualised using the xjView toolbox (www. alive learn. net/ 
xjview/) and BrainNetViewer [102].

Data availability
Ethical requirements to ensure patient confidentiality 
precludes public archiving of our data but non-identifia-
ble derived data can be provided on request to bona fide 
researchers. A data transfer agreement may be required 
if potentially identifiable data are requested, including 
raw clinical and structural imaging data. Researchers 
who would like to access data should contact the senior 
author (M.A.LR).

Results
Behavioural analyses
Demographic, clinical and cognitive performance
Between participant groups, no significant differences 
emerged for sex or handedness distribution (p > 0.10) or 
symptom duration (p = 0.09) (Table  1). Relative to Con-
trols, nfvPPA and lvPPA groups were significantly older 
and the nfvPPA group had significantly fewer years of 
education (all p < 0.001). On overall language perfor-
mance (MLSE Total score), patient groups performed 
significantly more poorly than Controls (all p < 0.001) 
but comparably to each other (p > 0.1). On MLSE sub-
domains, findings largely concurred with each vari-
ant’s descriptive template (i.e., disproportionately 
greater semantic errors in svPPA, motor-speech errors 
in nfvPPA, auditory-verbal working memory errors in 
lvPPA) (Supplementary Results). Patient groups further 
displayed comparable performance on the ACE-III total 
and its subdomains of attention, memory, and fluency. 
Significant differences emerged on the ACE-III Language 
total, where svPPA patients displayed significantly poorer 
performance than the lvPPA group (p = 0.016). The 
inverse pattern was noted on ACE-III Visuospatial total, 
with lvPPA patients exhibiting disproportionately poorer 
performance relative to svPPA (p = 0.001).

Determining principal components underlying cognitive 
heterogeneity
Component selection and scree plot analyses converged 
on a four-component solution (Fig. 1) (eigenvalues > 0.9) 
explaining 82.2% of performance variation (Supplemen-
tary Figs.  1–3). Component 1 explained 36.2% of the 
overall variance and loaded positively on ACE-III Atten-
tion, Fluency, Visuospatial subscales and MLSE syntax 
scores. This component was referred to as ‘general cogni-
tion’. Component 2 was labelled ‘semantic memory’, cap-
tured 22.7% of overall variance and loaded positively on 

http://www.alivelearn.net/xjview/
http://www.alivelearn.net/xjview/
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the ACE-III Memory, Language subscales and the MLSE 
Semantics subdomain. Component 3 was titled ‘working 
memory’, loaded positively on the MLSE verbal Work-
ing Memory subscale and accounted for 14.1% of overall 
performance variance. Finally, component 4 was named 
‘motor speech/phonology’ as it loaded positively on the 
MLSE Motor Speech and Phonological subscales and 
explained 9.3% of overall performance variance.

Graded overlaps and differences in PPA cognitive‑linguistic 
performance
Significant group differences were noted on the gen-
eral cognition component [F(2,44) = 7.4; p = 0.001; η2p = 
0.25[0.07–1]] where the lvPPA group performed sig-
nificantly worse than the svPPA group (p = 0.002), while 
nfvPPA patients displayed intermediate performance 
with considerable inter-individual variation (Fig.  2A-
D). On the semantic memory component, significant 
group differences were found [F(2,44) = 11.3; p < 0.001; 
η
2
p = 0.34[0.15–1]] with poorest performance in svPPA 

relative to nfvPPA/lvPPA (all p < 0.001). On the working 
memory component, significant group differences were 
noted [F(2,44) = 8.9; p < 0.001; η2p = 0.29[0.1–1]], with 
the lvPPA group performing significantly more poorly 
in comparison to svPPA/nfvPPA (all p < 0.01). Scat-
ter plots indicated that the majority of lvPPA patients 
visually separated from nfvPPA/svPPA when combin-
ing working memory and general cognition perfor-
mance (Fig.  2D). Finally, significant group differences 
emerged on the motor speech/phonology compo-
nent [F(2,44) = 10; p < 0.001; η2p = 0.31 [0.12–1]] where 

nfvPPA displayed disproportionately greater deficits 
(all p ≤ 0.01) with comparable performance between 
lvPPA and svPPA.

Associations between PCA components and disease duration
In the whole PPA group, no significant associations 
emerged between disease duration and PCA compo-
nents (all r < 0.11 and >  − 0.24; all p > 0.10) (Supplemen-
tary Table 1).

Neuroimaging analyses
Group differences in grey matter intensity (VBM)
Relative to Controls, svPPA patients showed signifi-
cantly reduced grey matter intensity in bilateral anterior 
temporal lobes (left > right), inferior/middle/superior 
temporal gyri, and medial temporal lobes. Compared to 
Controls, nfvPPA displayed significantly reduced grey 
matter intensity in bilateral inferior/middle frontal gyrus, 
anterior cingulate and insula (all left > right) extend-
ing into left inferior/middle/superior temporal gyri and 
medial temporal cortices. In the lvPPA group, relative to 
Controls, significant reductions in grey matter intensity 
were noted in the left temporoparietal junction/inferior 
parietal lobule, inferior/middle/superior temporal gyri, 
extending to the left posterior parieto-occipital and cer-
ebellar cortices, right temporoparietal cortices, and bilat-
eral frontal and medial temporal regions located in close 
proximity to the Sylvian fissure. Between-patient com-
parisons revealed no significant clusters (Supplementary 
Table 2 and Supplementary Fig. 4).

Fig. 1 Component loadings for cognitive measures from varimax PCA in the combined PPA group (N = 47). Figure indicates emergent cognitive 
factors, with components ordered by amount of overall variance explained. Red dashed lines represent component loading cut‑offs (|0.5|). ACE‑III 
Addenbrooke’s Cognitive Examination‑III, MLSE Mini Linguistic State Examination, PCA principal component analysis, PPA primary progressive 
aphasia
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Group differences in white matter integrity (NBS)
Detailed descriptions of NBS findings are in Supple-
mentary Results and Supplementary Figs.  5–6. Con-
sidering SC first, relative to Controls, svPPA displayed 
significantly reduced SC in temporal regions and 
connections to frontoparietal cortices (left > right). 
In nfvPPA, marked SC reductions in frontoinsular 
regions, intra-prefrontal, and frontal to temporopari-
etal connections were noted. In lvPPA, significant SC 
reductions were found in left temporoparietal/inferior 
parietal regions and their connections with fronto-
temporal, parietal, occipital, and cerebellar nodes. 

Relative to nfvPPA/lvPPA, svPPA displayed greatest SC 
reduction in the left anterior temporal lobe. Compari-
sons between nfvPPA and lvPPA revealed significantly 
fewer streamlines between left frontoinsular regions 
in nfvPPA and SC reductions between fronto-cerebel-
lar regions in lvPPA. For all patient-Control contrasts, 
findings for FA concurred with SC and extended to 
include a wider network of disconnections between 
bilateral anterior and posterior brain regions (see Sup-
plementary Results).

Fig. 2 PPA performance on emergent components. A Group differences on emergent components from the varimax PCA. Statistical comparisons 
run using ANOVA with post hoc comparisons using Sidak corrections (alpha cut‑off at p = .025; all relevant statistics displayed in the ‘ Results’ section 
corresponding to this figure). Bolded p‑values indicate statistically significant differences. Scatter plots with marginal density histograms for select 
components displaying relationships between B general cognition (Component 1) and semantic memory (Component 2), C working memory 
(Component 3) and motor speech/phonology (Component 4), and D general cognition (Component 1) and working memory (Component 
3). Positive scores indicate better performance. C component from PCA, PCA principal component analysis, lvPPA logopenic variant primary 
progressive aphasia, nfvPPA nonfluent variant primary progressive aphasia, svPPA semantic variant primary progressive aphasia
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Grey and white matter correlates of principal cognitive 
factors
We collate and report VBM and NBS correlation find-
ings from the overall PPA group in a component-specific 
manner for better readability (see also Supplementary 
Table 3).

General cognition VBM and NBS converged to indicate 
general cognitive performance as relating to grey mat-
ter intensity changes in the left temporoparietal/infe-
rior parietal regions, bilateral medial parieto-occipital, 
inferior frontal and subcortical regions, and SC changes 
between left temporoparietal/medial parietal regions, 
parieto-frontal connectivity, and intra-medial temporal 
connections (Fig. 3).

Semantic memory VBM and NBS converged to indi-
cate semantic memory performance as associated with 
grey matter and SC changes in bilateral anterior tempo-
ral (greater on the left), medial temporal (hippocampus, 
amygdala, and subcortical regions), and frontal regions 
(medial/inferior/orbito-frontal cortices) (Fig. 4). In addi-
tion, left-lateralised connectivity changes (SC and FA) 
within temporal cortex, temporoparietal, frontotemporal, 
and temporoparietal-cerebellar cortices emerged as asso-
ciated with semantic memory performance.

Working memory Working memory performance cor-
related with grey matter intensity changes in the left 
inferior parietal (supramarginal and angular gyrus) and 
posterior temporal cortices, and SC changes between 
cortical midline regions, and fronto-pallidal circuitry 
(Fig. 5).

Motor speech/phonology Motor speech/phonology 
performance was associated with grey matter integrity 
of bilateral superior/middle/inferior frontal regions and 
precentral gyri (Fig.  5). No associations emerged with 
structural connectivity indices.

Discussion
Understanding the neurocognitive drivers of PPA pheno-
typic heterogeneity will improve the diagnosis, identifica-
tion of potential moderators of disease phenotype, and 
stratification of patients for trials. Consistent with recent 
explorations [21, 71, 72, 103], we showed that PPA phe-
notypic profiles vary along four orthogonal dimensions: 
general cognition, semantic memory, working memory, 
and motor speech/phonology changes. Each component 
was characterised by graded performance variations, 
including prototypical variant-specific deficits, but also 

overlap between categorically distinct syndromes. Per-
formance on all components further emerged independ-
ent of disease duration. For the first time, we were able 
to explore and show that each phenotypical dimension 
was associated with distinct grey and white matter neural 
network changes in PPA. Although each component dif-
fered in its loading onto the three classically defined diag-
nostic groups, none were unique to a given syndrome.

Before discussing our results, it is important to contex-
tualise the transdiagnostic approach. Current taxonomies 
classify PPA on mutually exclusive language profiles [1]. 
These rigid categorical boundaries leave little room to 
accommodate phenotypic variation; therefore, an ‘atypi-
cal’ case could be thought to signal a novel subtype or a 
mixed phenotype of a variant. For example, lvPPA cases 
showing cognitive-linguistic symptoms outside of their 
diagnostic template are proposed to represent a distinct 
subtype of the condition [104, 105]. Syndromic sub-clas-
sification is a reasonable pursuit provided there is suf-
ficient within-group homogeneity and between-group 
differentiation that are consistently identifiable between 
studies and centres. However, increasing evidence points 
to systematic cognitive-linguistic differences of features 
within variants and overlap of features between variants, 
not consistently replicable across studies, hinting at fuzzy 
between-group boundaries and substantial within-group 
heterogeneity [21, 72, 74, 106]. Such inter-patient graded 
variations do not seem to arise from measurement noise 
or inaccurate differential diagnosis. Instead, these vari-
ations are systematic in nature and can be captured by 
transdiagnostic approaches, where constructing multi-
dimensional geometries allows (a) prototypical, atypical, 
and mixed PPA cases to be located and related to each 
other and (b) as shown for the first time in this study, for 
these systematic dimensions to be related to the under-
pinning neurobiology in the form of grey matter atrophy 
and changes in structural connectivity in PPA.

On the first component, general cognition, lvPPA 
patients displayed disproportionate deficits relative to the 
other groups; we further noted marked inter-individual 
variation in nfvPPA performance. While studies deci-
phering the lvPPA phenotype have largely focused on its 
language profile, evolving clinical conceptualisations of 
the syndrome highlight a “multidimensional” cognitive 
profile, encompassing core language deficits with vari-
able non-linguistic difficulties, emerging independent of 
disease severity and aphasia magnitude [38]. In fact, even 
in the earliest reported cases of lvPPA, non-linguistic 
changes, such as calculation difficulties, were noted [27]. 
By recent estimates, > 90% of lvPPA patients present with 
some magnitude of non-linguistic cognitive impairment 
[39] notable on calculation, praxis, episodic, and work-
ing memory [37, 38, 107]. This pattern of impairment, 



Page 10 of 18Ramanan et al. Alzheimer’s Research & Therapy          (2023) 15:219 

Fig. 3 Regions of grey matter (left panel) and white matter (right panel) changes that correlate with general cognition component. PCA, 
grey, and white matter analyses were conducted in the combined PPA group (N = 47). For VBM, coloured voxels indicate regions that emerged 
as significant in the voxel‑based morphometry analyses at a threshold of p < .001 uncorrected for multiple comparisons with a cluster threshold 
of 50 contiguous voxels. Age, total intracranial volume, and testing site were included as covariates in the analyses. Clusters are overlaid on the MNI 
standard brain with x, y, and z co‑ordinates reported in MNI standard space. For NBS, black spheres indicate cortical nodes whose edges (gold lines) 
emerged significant at p < .001 uncorrected for multiple comparisons. Edge thickness corresponds to corresponding effect size (i.e., t‑value). Age 
and testing site were included as covariates in the analyses. L left, R right, PCA principal component analysis, PPA primary progressive aphasia, AG 
angular gyrus, SMA supplementary motor area, SFG superior frontal gyrus, Olf. olfactory cortex, PCC posterior cingulate cortex, VBM voxel‑based 
morphometry, NBS network based statistics
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Fig. 4 Regions of grey matter (left panel) and white matter (right panel) changes that correlate with semantic memory component. PCA, grey, 
and white matter analyses were conducted in the combined PPA group (N = 47). For VBM, coloured voxels indicate regions that emerged significant 
in the voxel‑based morphometry analyses at a threshold of p < .001 uncorrected for multiple comparisons with a cluster threshold of 50 contiguous 
voxels. Age, total intracranial volume, and testing site were included as covariates in the analyses. Clusters are overlaid on the MNI standard brain 
with x, y, and z co‑ordinates reported in MNI standard space. For NBS, black spheres indicate cortical nodes whose edges (gold lines) emerged 
as significant at p < .001 uncorrected for multiple comparisons. Edge thickness corresponds to corresponding effect size (i.e., t‑value). Age 
and testing site were included as covariates in the analyses. L left, R right, PCA principal component analysis, PPA primary progressive aphasia, SMG 
supramarginal gyrus, STG superior temporal gyrus, IFG inferior frontal gyrus, OFC orbitofrontal cortex, VBM voxel‑based morphometry, NBS network 
based statistics
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however, emerges in the context of marked within-group 
heterogeneity in the syndrome. For example, some stud-
ies show that two lvPPA patients, with similar levels of 
core language impairment can markedly diverge in their 
visuospatial, executive functions, and memory perfor-
mance [20, 39]. Such patterns of systematic variation on 

non-linguistic cognitive performance in lvPPA emerge 
irrespective of severity of core language impairment [20]. 
A similar pattern was noted in the current study when 
contrasting general cognition with working memory pro-
files; irrespective of the magnitude of working memory 
deficits in lvPPA, marked variation in general cognitive 
performance was noted. Amidst relatively compara-
ble symptom duration and MLSE total scores between 
PPA groups, our findings suggest systematic variation 
in general cognition performance in lvPPA that may be 
independent of disease duration or severity of language 
performance. To explain this systematic variation, new 
clinico-anatomical models point to temporoparietal cor-
tices as shared neural substrates of cognitive-linguistic 
dysfunction in lvPPA [38], owing to the myriad domain-
general/selective cognitive computations supported by 
these regions [108–112]. It is suggested that systematic 
variation on both core language and co-occurring vari-
able non-linguistic cognitive deficits in the syndrome 
emerges from the stochastic spreading of pathology, 
functional aberrations, and atrophy from the temporopa-
rietal epicentre in the syndrome [38]. Accordingly, lvPPA 
patients with greater parietal dysfunction, as opposed 
to those with temporal-dominant degeneration, show 
increased general cognitive, visuospatial, executive dis-
turbances, and loss of functional autonomy [113, 114]. 
We extend this body of evidence to show that general 
cognitive changes in PPA relate to involvement of both 
grey and white matter networks centred on temporo-
parietal junction, inferior, and medial parietal cortices. 
While the implicated networks largely mirror lvPPA atro-
phy epicentres, encroachment of atrophy into posterior 
parietal regions magnifies cognitive/linguistic deficits in 
nfvPPA [26, 115], potentially explaining nfvPPA inter-
individual performance variation noted here. It is further 
possible that performance in lvPPA and nfvPPA groups 
on the general cognition component was influenced by 
the additional loading of the MLSE Syntax subdomain. 
As syntactic comprehension has been reported as a core 
deficit in these PPA variants [116], it will be important 
for future work in PPA to untangle relationships between 
core linguistic syntax changes with co-occurring general 
cognitive changes.

Three additional components emerged in our analysis, 
each reflecting language changes prototypical of one/
more PPA variant(s). Performance on the semantic mem-
ory component was poorest in svPPA and linked to grey/
white matter degeneration of bilateral anterior/posterior 
temporal lobes. Multimodal evidence converges to spot-
light the anterior temporal lobes as semantic processing 
hubs within a distributed frontal and temporo-parietal 
semantic network [117]. Degeneration of the seman-
tic hub in the anterior temporal lobe causes profound 

Fig. 5 Regions of grey matter (top left panel and bottom 
panel) and white matter (top right panel) changes that correlate 
with working memory and motor speech/phonology components. 
Findings for working memory component displayed in top left 
and right panels and findings for motor speech/phonology 
component displayed in bottom panel. PCA, grey, and white matter 
analyses were conducted in the combined PPA group (N = 47). 
For VBM, coloured voxels indicate regions that emerged as significant 
in the voxel‑based morphometry analyses at a threshold of p < .001 
uncorrected for multiple comparisons with a cluster threshold of 50 
contiguous voxels. Age, total intracranial volume, and testing site 
were included as covariates in the analyses. Clusters are overlaid 
on the MNI standard brain with x, y, and z coordinates reported 
in MNI standard space. For NBS, black spheres indicate cortical 
nodes whose edges (gold lines) emerged significant at p < .001 
uncorrected for multiple comparisons. Edge thickness corresponds 
to corresponding effect size (i.e., t‑value). Age and testing site were 
included as covariates in the analyses. No correlations emerged 
in the NBS for the Motor Speech/Phonology component. L left, R 
right, PCA principal component analysis, PPA primary progressive 
aphasia, PCC posterior cingulate cortex, ACC anterior cingulate 
cortex, OFC orbitofrontal cortex, FFG fusiform gyrus, VBM voxel‑based 
morphometry, NBS network‑based statistics
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conceptual degradation and greatly undermines function-
ing of the entire semantic network [42, 117–121]. Visu-
ally inspecting the distribution of scores on the semantic 
memory component, it is also noteworthy that a number 
of lvPPA patients also performed poorly on the seman-
tic memory component. It is noteworthy that perfor-
mance on semantic tasks can be failed not only because 
of a degradation of underlying representations (like in 
svPPA) but also because of failures in ancillary cognitive 
processes, an important one being “semantic control” 
[122]. Semantic control processes support access and 
manipulation of semantic information based on task and 
context demands and, at a neural level, localise to infe-
rior frontal and temporoparietal regional integrity [117]. 
An emerging hypothesis suggests that lvPPA patients 
may fail semantic tasks due to deregulated semantic con-
trol (emerging from temporoparietal dysfunction) [38]. 
In support of this hypothesis, a case study of an lvPPA 
patient reported their difficulty with using and manipu-
lating electrical appliances, despite intact conceptual 
knowledge for the items and their typical usage [123]. 
Although temporoparietal regions emerged in our study 
to correlate with performance on the semantic memory 
component, it is important for future work to probe the 
specific links between semantic control and temporopari-
etal integrity in lvPPA towards understanding the neuro-
cognitive origins of semantic cognition difficulties in this 
syndrome. Another possibility in lvPPA is that a strong 
anomic profile in the syndrome may have led to a drop 
in performance on this component, especially as meas-
ures such as the ACE-III Language task loaded heavily on 
the semantic memory component. Turning to working 
memory, performance on this component was poorest in 
lvPPA and associated with left inferior parietal dysfunc-
tion and disconnections between cortical midline and 
prefrontal-basal ganglia circuits. Auditory-verbal work-
ing memory difficulties, a hallmark of lvPPA, are typically 
discussed in the context of temporoparietal involvement 
in the syndrome [6, 124]; however, these functions are 
supported by a network of prefrontal, cortical midline, 
striatal/basal ganglia, and temporoparietal regions that 
interact to gate, represent, retrieve, and update infor-
mation within working memory [125–127]. Specifically, 
orbitofrontal and striatal dysfunction, notable in nfvPPA/
svPPA, could contribute to verbal and nonverbal working 
memory difficulties noted in the syndrome [128], over-
and-above primary motor-speech and semantic difficul-
ties, respectively. Interestingly, the scatterplots suggested 
that a combination of working memory and general cog-
nition components delineate the majority of lvPPA cases 
from svPPA/nfvPPA. Both components are putatively 
thought to stress temporoparietal cortex functions that 
are affected early in lvPPA [6, 38, 124]; their combination, 

therefore, could hold enhanced clinical utility in differ-
entiating lvPPA. Finally, motor speech/phonology per-
formance was greatly affected in nfvPPA and correlated 
with bilateral superior/inferior frontal regions under-
pinning these functions [5, 129]. The clustering of these 
error types suggests their co-occurrence in a number of 
nfvPPA cases [12, 14, 130, 131] where speech distortions 
may reflect phonetic errors due to apraxia of speech, 
while phonemic errors may reflect motor speech impair-
ment/difficulties in phonemic selection in nfvPPA [132, 
133]. In contrast, motor speech/phonology was relatively 
preserved in the svPPA group—a finding reported pre-
viously [7] and reflecting the neurocognitive divergence 
of phonological and semantic-processing regions in the 
brain [134].

Our study has several limitations. Capturing associa-
tions between biomarker and cognitive changes in PPA 
are important to inform targeted treatment and manage-
ment efforts. Our sample size was relatively small and 
the majority of our sample did not have supportive bio-
marker evidence and/or have not yet come to autopsy, 
preventing clinico-pathological correlations. We also 
could not include a metric of disease severity. On this 
note, our findings hint at the importance of including a 
multidimensional metric of disease severity that captures 
the differing types, nature, and magnitude of language 
and general cognitive deficits in PPA. Such a measure 
may be more informative of multidimensional pheno-
typic changes with time in PPA, over a singular, unidi-
mensional metric of disease severity. The prospective 
nature of our study also meant our PCA was constrained 
by the a priori planned behavioural assessments. Fur-
thermore, white matter hyperintensities are markedly 
prevalent in older populations. In individuals with neu-
rodegenerative disorders, moreover, functional brain 
changes precede structural alterations. Our study, how-
ever, did not have  T2-weighted structural neuroimaging 
or task-based functional neuroimaging data available, 
precluding us from investigating contributions of vascu-
lar and functional brain changes. By including patients 
who fell within current categorical diagnostic boundaries 
of PPA, we show the presence of graded variation within 
and between syndromes. However, there is a future need 
to extend such work to mixed PPA cases, allowing to 
explore where such mixed presentations sit within this 
multidimensional space of structured phenotypic vari-
ation. The current study was limited in its capacity to 
address this issue due to the lack of qualitative/quantita-
tive data on the specific clinical features that overlapped 
between our patient groups and the absence of a mixed 
PPA cohort. Although we found that none of our emer-
gent components were unique to a given syndrome, the 
inclusion of mixed PPA patients will be important to 
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grade the overlap of clinical features and better charac-
terise the continuous dimension of performance varia-
tion between classical and intermediate PPA syndrome 
categories. Future transdiagnostic studies may benefit 
from inclusion of larger samples of both PPA (including 
mixed PPA) and non-PPA syndromes associated with 
neurodegeneration, including other phenotypic expres-
sions of Alzheimer’s disease and movement disorders 
associated with aphasia [70], followed up over time from 
their first clinical examination. It will also be important 
for future work to include a broader neuropsychological 
battery to arrive at a more comprehensive understand-
ing of performance variations along multiple dimensions 
of cognitive-behavioural change. This will be important 
to understand common mechanisms driving symptom 
overlap between diverse disorders and promises to shine 
light on common pathophysiological and neurocognitive 
mechanisms moderating evolving profiles of phenotypic 
heterogeneity in neurodegenerative conditions.

Our findings hold a number of clinical implications. 
Transdiagnostic approaches offer a refined accompa-
niment to categorical diagnostic systems by revealing 
shared symptomatology across distinct clinical entities. 
This approach can help refine current diagnostic cri-
teria to accommodate graded performance differences 
between clinical presentations. Identifying common cog-
nitive and neural disruptions may further aid detection 
of symptomatic treatment targets applicable to multiple 
clinical categories. Recent work in PPA, for example, sug-
gests that a combination of speech and language training 
and excitatory neurostimulation of the parietal cortex 
may improve naming and verbal fluency performance 
with sustained benefits for up to 2 weeks [135, 136]. By 
revealing the neural correlates of general cognitive and 
language changes, our findings can inform medical and 
functional restoration programmes aiming to target 
specific brain networks and regions. Identification of 
such targets opens further possibilities to harness mod-
erators of phenotype, shared across the PPA spectrum, 
possibly opening avenues for newer disease manage-
ment approaches. One such avenue is behavioural treat-
ment, specifically speech and language therapy, which is 
important to improving overall speech, language abili-
ties, and cognitive communication, in turn benefitting 
various behavioural domains impacted across the PPA 
syndromes [137, 138]. These remain important areas of 
future work.
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Additional file 1: Supplementary Figure 1. Root‑mean‑squared‑error 
(RMSE) values derived from four‑fold cross‑validated (CV) component 
selection algorithm with venetian blind sampling on behavioural data. 
Findings suggest that a 4‑component solution holds, on average, the 
lowest RMSE values across 10 iterations of the algorithm. Values >2.975 
are truncated for plotting. Supplementary Figure 2. Eigenvalues for 
each component derived from varimax PCA solution on behavioural data 
in PPA patients. Eigenvalues indicated, rounded to two decimal points. 
PCA=principal component analysis; PPA=primary progressive aphasia. 
Supplementary Figure 3. Component‑specific (yellow) and cumulative 
variance (blue) explained by the varimax PCA solution on behavioural 
data in PPA patients. Variance explained amount indicated on top of 
each bar. PCA=principal component analysis; PPA=primary progressive 
aphasia. Supplementary Figure 4. VBM analyses of whole‑brain grey 
matter atrophy. Panels indicate regions of significant grey matter intensity 
reduction in each PPA group compared to Controls. Coloured voxels 
indicate regions that emerged significant in the VBM analyses at p<.05 
corrected for Family‑Wise Error with a cluster threshold of 100 contigu‑
ous voxels. Age, total intracranial volume and testing site were included 
as covariates in all analyses. Clusters are overlaid on the MNI standard 
brain with x, y, and z co‑ordinates reported in MNI standard space. For 
each cluster, corresponding t‑values and more details can be found in 
Supplementary Table 2. L=Left; svPPA=semantic variant primary progres‑
sive aphasia; nfvPPA=nonfluent variant primary progressive aphasia; 
lvPPA=logopenic variant primary progressive aphasia. Supplementary 
Figure 5. Network‑based statistics of whole‑brain streamline connectiv‑
ity and fractional anisotropy changes in PPA relative to Controls. Spheres 
represent nodes from the AAL‑116 atlas. Connections represent t‑values 
(all surviving pfwe<.05) with thicker lines indicating larger t‑values. For 
Streamline Connectivity, all t‑values exceed 1691.6 for svPPA vs. Controls, 
1785.8 for nfvPPA vs. Controls, and 1951.5 for lvPPA vs. Controls. For Frac‑
tional Anisotropy, all t‑values exceed 4311.1 for svPPA vs. Controls, 3889.2 
for nfvPPA vs. Controls, and 3302.9 for lvPPA vs. Controls. Age and testing 
site were included as covariates in all analyses. L=Left; lvPPA=logopenic 
variant primary progressive aphasia; nfvPPA=nonfluent variant primary 
progressive aphasia; svPPA=semantic variant primary progressive aphasia. 
Supplementary Figure 6. Network‑based statistics of whole‑brain 
streamline connectivity and fractional anisotropy changes between PPA 
patients. Spheres represent nodes from the AAL‑116 atlas. Connections 
represent t‑values (all surviving pfwe<.05) with thicker lines indicating 
larger t‑values. For Streamline Connectivity, all t‑values exceed 2934.9 
for svPPA<nfvPPA, 2488.5 for svPPA<lvPPA, 3348.6 for lvPPA<nfvPPA, and 
3678.4 for nfvPPA<lvPPA. For Fractional Anisotropy, all t‑values exceed 
3905.3 for svPPA<nfvPPA and 3469.8 for nfvPPA<lvPPA. Age and testing 
site were included as covariates in all analyses. L=Left; svPPA=semantic 
variant primary progressive aphasia; nfvPPA=nonfluent variant primary 
progressive aphasia; lvPPA=logopenic variant primary progressive aphasia. 
Supplementary Table 1. Pearson’s correlations between disease duration 
(symptom duration) and behavioural PCA components. Supplementary 
Table 2. VBM results showing regions of significant grey matter intensity 
reductions in patient groups versus Controls and between patient group 
comparisons. Supplementary Table 3. VBM results showing regions 
where grey matter intensity significantly correlates with PCA‑generated 
component performance in the PPA group.
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