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Abstract 

Background Alzheimer’s disease is a neurodegenerative condition associated with the accumulation of two mis-
folded proteins, amyloid-beta (Aβ ) and tau. We study their effect on neuronal activity, with the aim of assessing their 
individual and combined impact.

Methods We use a whole-brain dynamic model to find the optimal parameters that best describe the effects of A β 
and tau on the excitation-inhibition balance of the local nodes.

Results We found a clear dominance of A β over tau in the early disease stages (MCI), while tau dominates over A β 
in the latest stages (AD). We identify crucial roles for A β and tau in complex neuronal dynamics and demonstrate 
the viability of using regional distributions to define models of large-scale brain function in AD.

Conclusions Our study provides further insight into the dynamics and complex interplay between these two pro-
teins, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.
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Background
Alzheimer’s disease (AD) is a neurodegenerative dis-
ease that leads to progressive impairment of memory 
and other cognitive domains, neuropsychiatric symp-
toms, and, ultimately, severe impairment in all body 
functions. This results in both a large loss of quality of 
life for affected people and caregivers and high costs 
for society at large. AD pathogenesis is associated with 
several interlinked pathomechanistic processes, from 
genomics to connectomics, including the Notch-1 
pathway, neurotransmitters, polygenetic factors, neu-
roinflammation, and neuroplasticity  [1]. However, the 
accumulation of misfolded proteins is considered to 
be the pathological hallmark of AD: namely extracellu-
lar accumulation of Amyloid-beta (Aβ ), forming senile 
plaques; and intraneuronal aggregation of the micro-
tubule protein tau, called neurofibrillary tangles  [2]. 
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Treatments for removal of A β (e.g., with Adacanumab 
and Lecanemab) are currently discussed in light of 
inconclusive effects on reducing cognitive decline  [3]. 
In spite of the large body of research on AD, many 
aspects regarding pathophysiology and the roles of A β 
and tau are still incompletely understood [4, 5].

Regarding brain dysfunction, several human autopsy 
and animal studies have seen a disruption in excitation/
inhibition (E/I) balance, especially in early stages where 
neuronal hyperexcitability impairs cortical activity 
and thus contributes to cognitive decline  [6, 7]. Chang 
et  al.  [8] showed that tau affects excitatory and inhibi-
tory neurons differently, and its removal decreases the 
baseline activity of excitatory neurons and, simultane-
ously, affects the axon initial segments and the intrinsic 
excitability of inhibitory neurons, resulting in network 
inhibition. In this line, Bi and co-workers  [9] hypoth-
esized that A β impairs GABAergic function and thus 
produces synaptic hyperexcitation. Petrache et  al.  [10] 
found synaptic hyperexcitation and severely disrupted 
E/I inputs onto principal cells and a reduction of the 
somatic inhibitory axon terminals. Recently, Lauter-
born and coauthors  [11] found significantly elevated 
E/I ratios in post-mortem cortex samples. While inter-
esting results regarding E/I imbalance with marked 
hyperexcitability were derived in animals and post-
mortem human cortex samples, in-vivo human studies 
are lacking, as the activity of E/I populations cannot be 
directly measured using neuroimaging. Most works on 
whole-brain dynamics studied activation patterns but 
were not informative regarding the role of E/I popula-
tions  [12–16]. To understand the complex interplay 
between pathophysiological processes and brain activity 
(i.e., fMRI), models might contribute more biologically 
plausible insights when incorporating heterogeneity of 
brain dynamics based on empirical data [17–19].

Earlier work using whole-brain simulations focused 
on linking global and local brain dynamics to individual 
differences in cognitive performance scores in healthy 
subjects and in patients with AD  [12]. Demirtaş  [14] 
et  al. studied the effect of heterogeneity of local syn-
aptic strengths on a dynamical model of the human 
cortex in healthy subjects, showing that heterogeneity 
significantly improved the fitting of resting-state func-
tional connectivity. Stefanovski and co-authors  [15] 
focused on the connection of A β with neural function 
in The Virtual Brain  [20] to examine how A β modu-
lates regional E/I balance, producing local hyperexcita-
tion in regions with high A β loads. This led to further 
improvements in classifications between AD and con-
trols  [16]. However, all these works studied the effect 
of a single burden, namely A β , on the neuronal dynam-
ics, while our work focuses mostly on the interplay of 

both burdens, i.e., A β and tau, assessing their relative 
impacts on brain dynamics.

In this paper, we use whole-brain modeling techniques 
to study the impact of both A β and tau on the dynam-
ics of regional behaviors in AD, discerning the impact of 
each protein in isolation and in combination, and being 
able to assess their relative weights on contributing to 
abnormal brain activity. We use the balanced excitation-
inhibition (BEI) model  [18], which can reproduce the 
fMRI activity based on interactions of excitatory and 
inhibitory neural populations interconnected by white 
matter tracts. We show in this work a clear dominance of 
the effects of A β over tau on brain dynamics in the earlier 
stages of the disease (mild cognitive impairment, MCI), 
and a dominance of protein tau over A β in advanced 
stages (manifest dementia).

Methods
Methods overview
Model creation
Figure  1 presents an overview of our overall analysis 
strategy, and the details can be found in the “Methods” 
section. We make use of MRI and positron emission 
tomography (PET) from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI). In summary, we use dif-
fusion MRI to generate the structural connectomes of 
healthy controls (HC), mild cognitive impairment (MCI), 
and Alzheimer’s disease (AD) subjects. We use task-free 
resting-state functional MRI to fit a whole-brain model 
in which the local neuronal dynamics of each brain 
region evolve according to the dynamic mean field model 
by Deco et  al.  [18], which is then connected to a spon-
taneous blood-oxygenation-level-dependent (BOLD) 
dynamics. We refer to this model as the balanced excita-
tion-inhibition (BEI) model, which can be thought of as 
a homogeneous reference against which we evaluate the 
performance of our heterogeneous AD model. A β and 
tau distributions are derived from AV-45 and AV-1451 
PET from ADNI. For the heterogeneous model, we incor-
porate regional heterogeneous distributions of the main 
proteins involved in AD, namely A β and tau, as first-
order multiplicative polynomials for each burden and for 
each type of population (excitatory/inhibitory) into the 
local gain parameter M(E,I) . Fitting the model to empir-
ical fMRI data allows us to evaluate which effect of A β 
and tau on the different populations can mechanistically 
explain the observed behaviors.

Model fitting
For both of our models, homogeneous and heteroge-
neous, we assume that all diffusion MRI-reconstructed 
streamline fibers have the same conductivity, and thus 
the coupling between different brain areas is scaled 
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by a single global parameter, G. We first tune the G 
parameter of the BEI model to adjust the strength 
of effective coupling in the model and identify the 
brain’s dynamic working point by fitting the model to 
three empirical properties that are estimated from the 
empirical fMRI data:

• The Pearson correlation between model and empiri-
cal estimates of static (i.e., time-averaged) func-
tional connectivity estimated across all pairs of brain 
regions (FC);

• Similarity in sliding-window functional connectivity 
dynamics (swFCD); and

Fig. 1 Illustrative overview of our processing pipeline. A Basic ingredients for the integration of protein burden data from structural (dMRI, 
top left), functional (fMRI, top right), and burden (PET, right) using the same parcellation for each neuroimaging modality (top, middle) 
for generating a whole-brain computational model (bottom left). Each node of the model is using a realistic underlying biophysical neuronal 
model including AMPA (blue connections), GABA (red), and NMDA (gray) synapses as well as neurotransmitter gain modulation of these. 
B Fitting the measures in the whole-brain model: First, we simulate the BOLD timeseries for each brain region in the parcellation, for each 
subject. These timeseries are defined by its inputs, namely a previously found global coupling constant G, an individual Structural Connectivity 
(SC) matrix, and the corresponding individual A β and tau burdens. Subsequently, we compute a time-versus-time matrix of phase functional 
connectivity dynamics (phFCD). This is compared to a reference empirical phFCD extracted from the fMRI data off the same subject using 
the Kolmogorov-Smirnov distance (KS), DKS , which is minimized to find the generative parameters of the model. This process is repeated 
for the other two measures of brain dynamics, functional connectivity (FC) and sliding-window functional connectivity dynamics (swFCD)
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• The KS distance between a set of dynamic functional 
connectivity matrices (also called coherence connec-
tivity matrix [21]) built from the average BOLD time 
series of each ROI, which were Hilbert-transformed 
to yield the phase evolution of the regional signals 
(phFCD).

We then fit the coefficients for the two burdens, for 
excitatory and inhibitory populations, with a global opti-
mization algorithm, within directional bounds obtained 
from previous clinical observations (see below, in the 
“Constraints” section).

Result evaluation
To demonstrate that E/I imbalance is dependent on 
the precise distribution of the A β and tau burdens, at 
the optimal values obtained with the fitting procedure 
described above, we randomly shuffled the empirical 
protein burdens; i.e., the original 378 values for each of 
the misfolded protein maps were randomly re-assigned 
to different regions, and the model was run 10 times 
with each different randomly re-assigned receptor 
map, and the simulation was repeated 10 more times 
for each re-assigned receptor map, for a total of 100 
simulations each time. Figure  5 shows the results of 
randomly shuffling the empirical burden densities 
across the regions at the optimum point. This ran-
domly reshuffled manipulation yields a significantly 
worse fit compared to the actual empirical burden 
densities (as shown by the Wilcoxon statistics in the 
boxplot). We additionally evaluate the quality of the 
simulation results with the optimized parameters with 
original (i.e., not shuffled) burdens and with the homo-
geneous BEI model. Finally, we examine the relevance 
of each type of burden by optimizing them in isolation 
from each other (i.e., zeroing the other one out), and 
comparing the results. The whole comparisons include 
both burdens in isolation, both burdens simultane-
ously, and with the homogeneous (i.e., BEI) model.

Participants
Empirical data were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database 
(adni. loni. usc. edu), which is a longitudinal multi-site 
study designed to develop biomarkers for Alzheimer’s 
disease (AD) across all stages. The inclusion criteria for 
AD patients was the NINCDS-ADRDA criteria, which 
contains only clinical features [22], and an MMSE score 
below 24. For both HC and MCI, the inclusion criteria 
were a MMSE (Mini-Mental State Examination) score 
between 24 and 30, as well as age between 55 and 90 
years. Also, for MCI, participants had to have a sub-
jective memory complaint and abnormal results in 

another neuropsychological memory test. Imaging and 
biomarkers were not used for the diagnosis.

Data acquisition and processing
All the data in this study were previously used in Ste-
fanovski et  al.  [15] work, so we will present here an 
abridged version of the processing performed on the 
original data and refer to the original work for the details. 
All images used in this study were taken from ADNI-3, 
using data from Siemens scanners with a magnetic field 
strength of 3T.

Structural MRI
For each included participant, we created a brain par-
cellation for our structural data using FLAIR, following 
the minimal preprocessing pipeline  [23] of the Human 
Connectome Project (HCP) using Freesurfer1  [24], 
FSL  [25–27], and connectome workbench2. Therefore, 
we used T1 MPRAGE, FLAIR, and fieldmaps for the 
anatomical parcellation. We then registered the subject 
cortical surfaces to the parcellation of Glasser et al. [28] 
using the multimodal surface matching (MSM) tool [29]. 
In this parcellation, there were 379 regions: 180 left and 
180 right cortical regions, 9 left and 9 right subcortical 
regions, and 1 brainstem region.

PET images
For A β , we used the version of AV-45 PET already pre-
processed by ADNI, using a standard image with a 
resolution of 1.5mm cubic voxels and matrix size of 
160× 160× 96 , normalized so that the average voxel 
intensity was 1 and smoothed out using a scanner-spe-
cific filter function. Then, a brainmask was generated 
from the structural preprocessing pipeline (HCP) and 
used to mask the PET image. We received in each voxel 
a relative A β burden which is aggregated according to the 
parcellation used for our modeling approach. Subcortical 
region PET loads were defined as the average SUVR in 
subcortical gray matter (GM), normalized by the inten-
sity of the cerebellum. With the help of the connectome 
workbench tool, using the pial and white matter surfaces 
as ribbon constraints, we mapped the Cortical GM PET 
intensities onto individual cortical surfaces. Finally, using 
the multimodal Glasser parcellation we derived average 
regional PET loads.

For tau, we also used ADNI’s preprocessed version of 
AV-1451 (Flortaucipir) following the same acquisition 
and processing, resulting in a single relative tau value for 
each voxel. Then, these values were also aggregated to the 

1 https:// surfer. nmr. mgh. harva rd.  edu/ fswiki/ FreeS urfer Metho dsCit ation
2 https:// www. human conne ctome. org/ softw are/ fconn ectome- workb ench

https://adni.loni.usc.edu
https://surfer.nmr.mgh.harvard.%20edu/fswiki/FreeSurferMethodsCitation
https://www.humanconnectome.org/software/fconnectome-workbench
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selected parcellation, following the already mentioned 
steps. The final average regional tau loads were obtained 
in the Glasser parcellation. Both mean burden values can 
be found, for each cohort, in Table 2.

DWI
Individual tractographies were computed only for 
included HC participants, and they were averaged to a 
standard brain template (see below). Preprocessing was 
mainly done with the MRtrix3 software package3.

In particular, the following steps were performed: First, 
we denoised the DWI data [30], followed by motion and 
eddy current correction4. Then, B1 field inhomogene-
ity correction (ANTS N4), followed by a brainmask esti-
mation from the DWI images. Next, we normalized the 
DWI intensity for the group of participants, which was 
used to generate a WM response function [31], and cre-
ated an average response function from all participants. 
Next, we estimated the fiber orientation distribution and 
the average response function  [32] using the subject-
normalized DWI image, to generate a five-tissue type 
image. Finally, we used the iFOD2 algorithm  [33] and 
the SIFT2 algorithm  [34] to get the weighted anatomi-
cal constrained tractography [35], to end up merging all 
information into the Glasser connectome, resulting in a 
structural connectome (SC).

The participating centers of ADNI are following cen-
trally controlled protocols, which are described in detail 
at the ADNI website5. This includes the set-up of the 
MRI protocol by central ADNI institutions and quality 
checks with phantoms. However, there indeed remain 
differences between ADNI centers and ADNI phases. 
In the Supplemental material, we added a table with the 
DTI metadata of the 15 healthy controls that were used 
for structural connectivity calculation in this study (from 
[15]). Here, we see, despite the focus on only one scan-
ner type from Siemens, that the data uses two differ-
ent MRI protocols that only slightly differ: ADNI3 basic 
and ADNI3 advanced, which were designed to be com-
patible with each other6. The main difference remains 
in the TR and TE values, due to the different extent of 
measured sequences. A recent study showed for ADNI 
data including the used protocols that a cross-center 
harmonization indeed leads to significant differences in 
diffusion imaging derivatives, but the relationship with 

clinical data did not change, no matter if the harmoniza-
tion was performed or not [36]. We, therefore, employed 
standardized preprocessing steps including quality con-
trols, as outlined in the minimal processing pipeline of 
the Human Connectome Project  [23]. To address the 
remaining effects, we have employed a methodological 
approach to compensate for this bias: we decided to use a 
group-based structural connectivity template for all par-
ticipants. This comes with the benefit of standardizing 
the underlying network to an unaffected brain, which is 
then influenced by A β and Tau. Even though the group-
based template is derived from data from several ADNI 
study sites, this approach protects from introducing arti-
ficial differences between the subjects, as all are using the 
same structural connectivity. Also, it must be taken into 
account that we used an averaged SC from all healthy 
controls, thus further reducing any systematic bias of this 
kind.

fMRI
With respect to the processing of the fMRI data, the 
images were initially preprocessed in FSL FEAT and inde-
pendent component analysis-based denoising (FSLFIX) 
following a basic pipeline  [15]. Time courses for noise-
labeled components, along with 24 head motion param-
eters, were then removed from the voxel-wise fMRI time 
series using ordinary least squares regression.

The resulting denoised functional data were spatially 
normalized to the MNI space using Advanced Normali-
zation Tools (version 2.2.0). Mean time series for each 
parcellated region were then extracted, and interregional 
FC matrices were estimated using Pearson correlations 
between each pair of regional time series. Dynamic FC 
matrices were also calculated for the empirical data, as 
outlined below.

Generation of a standard brain template
As previously done  [15], we average the SCs of all HC 
participants, using an arithmetic mean

wherein Cµ is the averaged SC matrix, n is the number of 
HC participants and Ci is the individual SC matrix.

However, as matrices in this context are large (i.e., 
379 regions), the average input to any given node can 
be too large for the DMF, making fitting and processing 
in general more difficult. Thus, we discarded the tradi-
tional normalization of dividing the matrix elements by 
their maximum, and used a slightly different approach, 
instead. First, we added one and applied the logarithm to 
every entry, as lC = log(Cµ + 1) . Then, we computed the 

Cµ =

n

i=1

Ci /n = (C1 + C2 + ...+ Cn)/n

3 http:// www. mrtrix. org
4 https:// mrtrix. readt hedocs. io/ en/ latest/ dwi_ prepr ocess ing/ dwipr eproc. 
html
5 https:// adni. loni. usc. edu/ wp- conte nt/ themes/ fresh news- dev- v2/ docum 
ents/ mri/ ADNI3_ MRI_ Tech_ Manual_ v2. pdf
6 https:// adni. loni. usc. edu/ wp- conte nt/ uploa ds/ 2017/ 07/ ADNI3- MRI- 
proto cols. pdf

http://www.mrtrix.org
https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html
https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/mri/ADNI3_MRI_Tech_Manual_v2.pdf
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/mri/ADNI3_MRI_Tech_Manual_v2.pdf
https://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf
https://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-MRI-protocols.pdf
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maximum input any node could receive for a unitary unit 
input current, maxNodeInput = maxj(

∑

i(lCi,j)) , and 
finally, we normalized by 0.7 ∗ lC/maxNodeInput , where 
0.7 was chosen to be a convenient normalization value. 
Observe that this constant is actually multiplying another 
constant G in the model which we fit to empirical data, so 
its actual value can safely be changed.

In Fig. 3, we can find the SC matrix and organization 
graph, where we can observe that the general character-
istics of physiological SCs such as symmetry, laterality, 
homology, and subcortical hubs are maintained in the 
averaged connectome. The election of the averaged SC 
allowed us to control all factors (e.g., atrophy), which 
matched our objective of simulating the activity from 
both healthy and “pathogenic” modifications by A β and 
tau.

Balanced excitation‑inhibition (BEI) model
In this work, we used the dynamic mean field (DMF) 
model proposed by Deco et al. [18], which consists of a 
network model to simulate spontaneous brain activity 
at the whole-brain level. Following the original formu-
lation, each node represents a region of interest (i.e., 
a brain area) and the links represent the white mat-
ter connections between them. In turn, each node is 
a reduced representation of large ensembles of inter-
connected excitatory and inhibitory integrate-and-fire 
spiking neurons (as in the original, respectively 80% 
and 20% neurons), to a set of dynamical equations 
describing the activity of coupled excitatory (E) and 
inhibitory (I) pools of neurons, based on the origi-
nal reduction of Wong and Wang  [37]. In the DMF 
model, excitatory synaptic currents, I(E), are medi-
ated by NMDA receptors, while inhibitory currents, 
I(I), are mediated by GABAA receptors. Both neuronal 
pools are reciprocally connected, and the inter-area 
interactions occur at the excitatory level only, scaled 
by the structural connectivity Ckj (see the “Structural 
MRI” section).

To be more specific, the DMF model is expressed by 
the following system of coupled differential equations:

(1)

I
(E)
k = WE Io + w+ JN S
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k + JNG
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j
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Here, the last two equations should add, when integrat-
ing, an uncorrelated standard Gaussian noise term with 
an amplitude of σ = 0.01nA (using Euler-Maruyama 
integration). In these equations, � is a parameter that 
can be equal to 1 or 0, indicating whether long-range 
feedforward inhibition is considered ( � = 1 ) or not 
( � = 0 ). In the above equation, the kinetic parameters are 
γ = 0.641/1000 (the factor 1000 is for expressing every-
thing in ms),   τE = τNMDA , and τI = τGABA . The excita-
tory synaptic coupling JNMDA = 0.15 (nA). The overall 
effective external input is I0 = 0.382 (nA) scaled by WE 
and WI , for the excitatory pools and the inhibitory pools, 
respectively. The effective time constant of NMDA is 
τNMDA = 100 ms  [37]. The values of WI , I0 , and JNMDA 
were chosen to obtain a low level of spontaneous activity 
for the isolated local area model. The values of the gating 
variables can be found in Table 1.

As mentioned, the DMF model is derived from the 
original Wong and Wang model [37] to emulate resting-
state conditions, such that each isolated node displays 
the typical noisy spontaneous activity with low firing 
rate ( H (E) ∼ 3Hz ) observed in electrophysiology experi-
ments, reusing most of the parameter values defined 
there. We also implemented the feedback inhibition 
control (FIC) mechanism described by Deco et  al.  [18], 
where the inhibition weight, Jn , and was adjusted sepa-
rately for each node n such that the firing rate of the 
excitatory pools H (E) remains clamped at 3 Hz even when 
receiving excitatory input from connected areas. Deco 
et  al.  [18] demonstrated that this mechanism leads to a 
better prediction of the resting-state FC and to a more 
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Table 1 Gating variables in the BEI model

Excitatory gating variables Inhibitory gating variables

aE = 310 ( nC−1) aI = 615 ( nC−1)

bE = 125 (Hz) bI = 177 (Hz)

dE = 0.16 (s) dI = 0.087 (s)

τE = τNMDA = 100 (ms) τI = τGABA = 10 (ms)

WE = 1 WI = 0.7
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realistic evoked activity. We refer to this model as the 
balanced excitation-inhibition (BEI) model. Although the 
local adjustments in this model introduce some degree of 
regional heterogeneity, the firing rates are constrained to 
be uniform across regions so we consider this BEI model 
as a homogeneous benchmark against which we evalu-
ate more sophisticated models that allow A β and tau to 
affect intrinsic dynamical properties across regions.

Following the Glasser parcellation [23], we considered 
N = 379 brain areas in our whole-brain network model. 
Each area n receives excitatory input from all structur-
ally connected areas into its excitatory pool, weighted 
by the connectivity matrix, obtained from dMRI (see the 
“DWI”  section). Furthermore, all inter-area E-to-E con-
nections are equally scaled by a global coupling factor G. 
This global scaling factor is the only control parameter 
that is adjusted to move the system to its optimal work-
ing point, where the simulated activity maximally fits the 
empirical resting-state activity of healthy control partici-
pants. Simulations were run for a range of G between 0 
and 5.5 with an increment of 0.05 and with a time step of 
1 ms. For each G, we ran 200 simulations of 435 s each, 
in order to emulate the empirical resting-state scans 
from 17 participants. The optimum value found, for the 
phFCD observable, is for G = 3.1 . See Fig. 2A.

Simulated BOLD signal
Once we have obtained the simulated mean field activity, 
we need to transform it into a BOLD signal we used the 
generalized hemodynamic model of Stephan et  al.  [38]. 
We compute the BOLD signal in the k-th brain area from 
the firing rate of the excitatory pools H (E) , such that an 
increase in the firing rate causes an increase in a vasodi-
latory signal, sk , that is subject to auto-regulatory feed-
back. Blood inflow fk responds in proportion to this 
signal inducing changes in blood volume vk and deoxy-
hemoglobin content qk . The equations relating these bio-
physical variables are:

with finally

being the final measured BOLD signal.

(7)

dsk

dt
= 0.5r

(E)
k + 3− ksk − γ (fk − 1)

dfk

dt
= sk

τ
dvk

dt
= fk − vα

−1

k

τ
dqk

dt
= fk

1− (1− ρ)f
−1
k

ρ
− qk

vα
−1

k

vk

Bk = v0

[

k1(1− qk)+ k2

(

1−
qk

vk

)

+ k3(1− vk)

]

We actually used the updated version described later 
on  [38], which consists on introducing the change of 
variables ẑ = lnz , which induces the following change for 
z = fk , vk and qk , with its corresponding state equation 
dz
dt

= F(z) , as:

which results in z(t) = exp(ẑ(t)) always being positive, 
which guarantees a proper support for these non-nega-
tive states, and thus numerical stability when evaluating 
the state equations during evaluation.

Aβ‑Tau model
In our heterogeneous model, A β and Tau are introduced, 
at the formulae for the neuronal response functions, 
H (E,I) (excitatory/inhibitory), into the gain factor M(E,I)

k  
for the k-th area as

where b(E,I)(Aβ ,τ) are the excitatory/inhibitory A β and tau 
bias parameters, while s(E,I)(Aβ ,τ) are the respective scaling 
factors. These are the 8 (from which actually only 6 are 
needed as tau only affects excitatory neurons  [39], see 
next section) parameters that we will optimize for each 
subject individually.

Constraints
Based on previous neuroscientific experiments  [4], we 
included constraints on the direction of effect of A β and 
tau (i.e., inhibitory vs. excitatory influence). We intro-
duced the following constraints:

• Aβ produces inhibitory GABAergic interneuron dys-
function [6, 40], thus we can infer that sIAβ < 0.

• Aβ produces impaired glutamate reuptake [6, 40], so 
we can introduce the bound sEAβ > 0.

• Tau appears to target excitatory neurons [39], so we 
can safely consider that bIτ = sIτ = 0.

• Tau binds to synaptogyrin-3, reducing excitatory 
synaptic neurotransmitter release [41], thus sEτ < 0.

Although the interplay between A β and tau is not com-
pletely known [4], but there is evidence that A β promotes 
tau by cross-seeding [42, 43], thus the cross-term factors 
(i.e., the ones resulting from the multiplication of A β and 
tau scaling parameters) play a crucial role to elucidate the 
final impact of the combined burden.

dẑ

dt
=

d ln(z)

dz

dz

dt
=

F(z)

z

(8)ME
k =

(

1+ bEAβ + sEAβAβk

)(

1+ bEτ + sEτ tauk

)

(9)MI
k =

(

1+ bIAβ + sIAβAβk

)

(

1+ bIτ + sIτ tauk
)
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Observables
Edge‑centric FC
The static edge-level FC is defined as the N × N  matrix 

of BOLD signal correlations between brain areas com-
puted over the entire recording period (see Fig.  3). We 
computed the empirical FC for each human participant 

Fig. 2 Optimization and evaluation of the model: First, using only HC subjects, the global coupling parameter G is found, and then the model 
is adjusted to minimize the distance between the empirical and simulated fMRI data, taking into account the regional burden distributions. A 
Minimization of G between 0 and 5.5, for functional connectivity (FC), sliding-window functional connectivity dynamics (swFCD), and phase 
FCD (phFCD). Given their strong similarity in the results, phFCD was used for all subsequent computations. B, C Shows the normalized (in [0, 1]) 
FCD distributions for the empirical data (top) and the simulated model at the optimal result (bottom). D, E, F Analysis of the impact (smaller 
values are better) of the different burdens with respect to their impact on the phFCD (KS distance) when optimized together and in isolation, 
with the homogeneous state as a reference. Clearly, in all cases, the combined burden outperforms any other model. However, as can be seen, 
the results for AD clearly show that tau alone accounts for the vast majority of the weight of the impact on brain activity (F), while for MCI patients 
it is A β who dominates (E). For HC patients we also see a predominance of A β , although with less difference between the model incorporating A β 
and tau vs. A β in isolation (D). Average distributions of A β (G) and tau burdens (H) over each cohort (using ADNI’s database). Colors correspond 
to the normalized burden of each protein. The increase in A β and tau can be clearly seen
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and for each simulated trial, as well as for the group-aver-
ages SC matrix of the healthy cohort. All empirical and 
simulated FC matrices were compared by computing the 
Pearson correlation between their upper triangular ele-
ments (given that the FC matrices are symmetric).

swFCD
The most common and straightforward approach to 
investigate the temporal evolution of FC is the sliding-
window FC dynamics (swFCD)  [45]. This is achieved 
by calculating the correlation matrix, FC(t), restricted 
to a given time-window (t − x : t + x) , and successively 
shifting this window in time resulting in a time-varying 
FCNxNxT matrix (where N is the number of brain areas 
and T the number of time windows considered). Here, we 
computed the FC over a sliding window of 30 TRs (cor-
responding approximately to 1.5 min) with incremen-
tal shifts of 3 TRs. This FCD matrix is defined so that 
each entry, ( FCD(tx, ty) ) corresponds to the correlation 
between the FC centered at times tx and the FC centered 
at ty . In order to compare quantitatively the spatio-tem-
poral dynamical characteristics between empirical data 
and model simulations, we generate the distributions of 
the upper triangular elements of the FCD matrices over 
all participants as well as of the FCD matrices obtained 
from all simulated trials for a given parameter setting. 
The similarity between the empirical and model FCD 
distributions is then compared using the KS distance, 
DKS , allowing for a meaningful evaluation of model per-
formance in predicting the changes observed in dynamic 
resting-state FC. However, the fundamental nature of the 

swFCD technique implies the choice of a fixed window 
length, which limits the analysis to the frequency range 
below the window period, so the ideal window length to 
use remains under debate [46].

phFCD
In an attempt to overcome the limitations of the sliding-
window analysis, a few methods were proposed to esti-
mate the FC(t) at the instantaneous level. For instance, 
phase functional connectivity dynamics (phFCD) con-
sists in computing the phase coherence between time 
series at each recording frame  [21]. In brief, the instan-
taneous BOLD phase of area n at time t, θn(t) , is esti-
mated using the Hilbert transform. Given the phase, the 
angle between two BOLD signals is given by their abso-
lute phase difference: �np = |θn(t)− θp(t)| . Then, the 
phFCD(t) between a pair of brain areas n and p is calcu-
lated as:

with N the number of brain regions considered in the 
parcellation used. To compare two phFCD matrices 
among themselves, e.g., a simulated and an empirical 
one, again the KS distance is usually used.

Full optimization
To efficiently optimize the 6-dimensional function 
described before for the three bias and scaling values, a 
simple local optimization-based approach such as con-
jugate gradients cannot be used, as this is a (usually) ill-
posed problem with a global minimum surrounded by 

phFCDnp(t) = cos(�np(t)), n, p ∈ N = 1, ...,N

Fig. 3 Visualization of the SC graph, in matrix form (left) and as a graph showing the strongest 5% of connections. Node positions are computed 
with Fruchterman and Reingold’s [44] algorithm, which assumes stronger forces between tightly connected nodes. Besides the high degree 
of symmetry, we can observe the laterality is kept in the graph structure (also for subcortical regions). Node size linearly represents the graph 
theoretical measure of structural degree for each node. As we can see, the most important hubs are in the subcortical regions
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many local minima. Instead, we need to resort to a global 
optimization algorithm. In our case, we used a Bayesian 
minimization algorithm using Gaussian Processes (GP), 
which approximates the function using a multivariate 
Gaussian. In particular, our implementation uses the 
gp_minimize method from the scikit-optimize Python 
library7. At its core, the method approximates the objec-
tive function with a Gaussian process, assuming that the 
values follow a multivariate Gaussian. The covariance 
of the function values is given by a GP kernel between 
the parameters. With this information, the algorithm 
chooses the next parameter to evaluate by selecting the 
acquisition function over the Gaussian prior. The error 
measure used was the KS distance between the empirical 
BOLD signal and the average over a number of trials (10 
in our case) of the simulated signal, and we let the func-
tion run for 100 iterations. In all cases, the results moved 
significantly away from the priors.

Results
We used diffusion MRI to generate the structural con-
nectomes of 17 healthy control (HC) subjects, 9 subjects 
with mild cognitive impairment (MCI), and 10 subjects 
with Alzheimer’s disease (AD) from ADNI. These sub-
jects were also analyzed in the studies by Stefanovski 
et al. [15] and Triebkorn et al. [16]. For the description of 
subject characteristics, see Table 2 and Fig. 3.

To ensure a sufficient sample size for our computation-
ally expensive analysis, we used the G ∗Power  [47] soft-
ware to conduct statistical power calculations based on a 
two-group Wilcoxon-Mann-Whitney test, with a signifi-
cance level α = 0.05 and power 1− β = 0.8 . Assuming 
a standard deviation σ = 0.05 (a reasonable assumption 
given our results below), we calculated that the minimum 
effect size in this setting would be d = 1.1 , which implies 
that the minimum detectable difference between the 
means of the control population and any of the other two 
would be around 0.055.

Fitting the homogeneous model
As a first step, we evaluated the capability of the homo-
geneous BEI model to reproduce the empirical properties 
of resting-state FC data. To this end, we fitted the global 
coupling parameter, G, without considering heterogene-
ity by setting all regional gain parameters M(E,I) = 1 [18]. 
Then, we evaluated the ability of the model to reproduce 
three different properties of empirical resting-state fMRI 
recordings: edge-level static FC, swFCD, and phFCD (see 
the “Methods” section for further details.) The results of 
this analysis are shown in Fig. 2A. To remove differences 
across subjects related to age, we considered averaged 
values across subjects over the healthy control group 
and took an equivalent number of simulated trials with 
the same duration as the human experiments (see the 
“Methods” section). Following a previous research  [19], 
we focused on fitting the phFCD, as it better captures 
the spatiotemporal structure of the fMRI data, thus being 
a stronger constraint on the model. Indeed, where FC 
fits are consistently high across a broad range of G val-
ues, phFCD yields a clear global optimum at G = 3.1 . 
Thus, we choose to use phFCD for all further fitting 
procedures.

Introducing A β and tau heterogeneity
Once the global coupling parameter was found, we intro-
duced the regional heterogeneity in the distributions of 
A β and tau, and studied how their introduction lead to a 
better representation of neural dynamics, i.e., improved 
the fitting of phFCD. Spatial maps for average values of 
each form of protein burden used in our modeling are 
shown in Fig. 2G (for A β ) and H (for tau) for each cohort. 
Also, in the Supplemental material, we present a graph 
with each of these burdens for each cohort in the MMSE 
classification. For some individuals, (mainly HC sub-
jects, e.g., as subject 003_S_6067 in the ADNI database, 
with ρ = 0.92 , p < 0.001 ) the A β and tau distributions 
were strongly correlated, while for others the two maps 
showed a weaker correlation (e.g., subject 036_S_4430, 
with ρ = 0.10 , p = 0.04 .) This observation indicates that 
each protein burden introduces a different form of bio-
logical heterogeneity to the benchmark BEI model, and 
thus should be modeled separately in our simulations.

We introduced these types of heterogeneity by modu-
lating the regional gain functions M(E,I) at the optimal 

Table 2 Epidemiological information of the population used in this study

Diagnosis n (female) Mean age σ Min. age Max. age Mean MMSE σMMSE Min. MMSE Max. MMSE Mean A β Mean tau

HC 17 (10) 70.8 4.3 63.1 78.0 29.3 0.7 28 30 1.31 1.53

MCI 9 (3) 68.8 5.8 57.8 76.6 27.4 1.5 25 30 1.52 1.80

AD 10 (5) 72.0 9.6 55.9 86.1 21.3 6.8 9 30 2.01 2.46

7 https:// scikit- optim ize. github. io/ stable/ modul es/ gener ated/ skopt. gp_ 
minim ize. html

https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.gp_minimize.html
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working point of the homogeneous BEI model found at 
the previous stage ( G = 3.1 ), through the bias and scal-
ing parameters introduced above, denoted bEAβ and sEAβ 
for A β , and bEτ  and sEτ  for tau, all for the excitatory pop-
ulations, and similarly for the inhibitory populations 
with superscript I. We performed a search in param-
eter space with constraints introduced from experimen-
tal observations (see the “Constraints”  section), to find 
the optimal working point for the two protein burdens 
simultaneously. This results in an 8-degree of freedom 
optimization, which is reduced to six degrees due to the 
constraints. For the optimization, we used a Bayesian 
optimization algorithm using Gaussian processes (see the 
“Full optimization” section). We also performed a simpli-
fied search, limited to the two-variable bIAβ and sIAβ space, 
i.e., the inhibitory bias and scaling of the A β influence on 
inhibitory neuron parameters (Eq. 9). In this case, the 2D 
optimization results showed a decrease in the neuronal 
activity with increasing A β concentration, confirming 
previous results [15]. On average, for each group of sub-
jects, we got the results shown numerically in Table 3.

The results of the fitting can be seen visually in Fig. 4. 
This figure shows that there is a clear regime in which all 
three empirical properties are fitted well by the model, 
particularly for the values shown above, where a fitting of 
phFCD of 0.13 is achieved for the AD subjects, while the 
reference homogeneous value is equal to 0.5.

We repeated the analysis based on the AT(N) clas-
sification  [48–51], now grouping the subjects into four 
categories: A−T−, A+T−, A−T+, and A+T+, according 
to their average A β and tau SUVR levels. As thresholds, 
we used 0.9 of the average SUVr value for each burden, 
which results in a threshold of 1.4219 for A β , and 1.67 
for tau. As we have A β PET and Tau PET available, we 
were able to assign the A and T dimensions of AT(N), as 
defined in [2]. As a result, we redistributed our original 
cohorts into four sets, each with a different number of 
subjects: A−T−: 15, A−T+: 4, A+T−: 5, and A+T+: 13. 
As the number for A−T+ and A+T− cohorts were small, 
we expected to get inconclusive results when compar-
ing with these two cohorts. The results show very simi-
lar behaviors for the A-T- group with respect to the HC 
group and for the A+T+ with respect to the AD one. 
However, for the other two groups, given the low num-
ber of subjects, the results are mixed or inconclusive. 
A detailed explanation can be found in the companion 
Supplemental material.

Analysis of burden impact
For the optimal parameter values resulting from model 
fitting, we simulated each dynamical model 10 times 
for each subject to account for the inherently stochas-
tic nature of the models and computed the respective 
measures of model fit. Figure  5 shows the distributions 

Table 3 Resulting averaged parameters from the optimization procedure. In parenthesis, the respective standard deviations

Cohort b
E
Aβ s

E
Aβ b

E
τ s

E
τ b

I
Aβ s

I
Aβ

AD 0.2 (0.5) 2.3 (1.2) − 0.4 (0.6)  − 2.6 (0.8) 0.2 (0.6)  − 2.5 (0.8)

MCI 0.4 (0.7) 1.7 (1.5)  − 0.5 (0.5)  − 2.8 (0.7)  − 0.1 (0.8)  − 2.1 (1.2)

HC 0.1 (0.8) 1.7 (0.9)  − 0.5 (0.6)  − 2.8 (1.0) 0.3 (0.6)  − 3.1 (1.0)

Fig. 4 Parameter values found after the optimization stage for HC, MCI and AD subjects. Observe that all b(E ,I)(Aβ ,τ ) , the excitatory/inhibitory 
A β and tau bias parameters, have negligible values, while the scaling parameters s(E ,I)(Aβ ,τ ) present non-null values. Of note, the p-values 
between the different scaling parameters across the cohorts are different in a moderately significant way ( p < 0.03 ), remarkably between HC 
and AD, but usually not between MCI and AD. In these plots, boxes extend from the lower to upper quartile values of the data, adding an orange 
line at the median. Also, whiskers are used to show the range of the data, extending from the box
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of fit statistics across runs for the homogeneous and 
the heterogeneous models for the different cohorts. In 
addition, we show results for a null ensemble of mod-
els, in which the regional burden values were spatially 
shuffled to generate surrogates with the same spatial 
autocorrelation as the empirical data. Across the bench-
mark property to which the data were fitted (phFCD), 
the models taking into account the regional burden 
heterogeneity perform better than the homogeneous 
model ( p < .0005 ). We also found a consistent gradi-
ent of performance across all benchmarks, with the 
heterogeneous model performing best, and the homo-
geneous model showing the poorest performance. For 
each benchmark metric, the performance of the het-
erogeneous model was better than all other models (in 
all cases p < .06 ). Also, it must be noted that the dif-
ferences in fit statistics between models are significant, 
as shown in Fig. 5. For example, for the AD cohort, the 
correlation of the median phase FCD between the fit-
ted model and empirical data shows r < 0.1 for the het-
erogeneous model, and r ≈ 0.2 for the BEI model. In all 
subject groups, the difference between these two models 
is clear, with p < 0.0005 . In all reported results we used 
a Mann-Whitney-Wilcoxon test two-sided with Benja-
mini-Hochberg correction (p-value annotation legend: 
ns: p <= 1.00e + 00 , *: 1.00e − 02 < p <= 5.00e − 02 , 
**: 1.00e − 03 < p <= 1.00e − 02 , ***: 1.00e − 04 < p <= 1.00e − 03 , 
****: p <= 1.00e − 04).

Finally, we performed an analysis comparing the 
impact of each type of burden, in isolation or together, 
onto the simulation results. In Figs.  2D-F we can see 
these results for the different cohorts, for A β and tau, 
A β alone, tau alone and the homogeneous BEI model, 
added for reference. As we can see, with respect to the 
homogeneous model, the best performance is system-
atically obtained by the combined action of both A β 
and tau, giving a value with p < 0.0004 in all cases. 

However, for each cohort, each protein is shown to play 
a different role in the development of the disease. For 
AD subjects, the effect of A β on the optimal combined 
result is small, with a p < 0.0005 , while the influence of 
tau alone has a p value that does not allow us to distin-
guish between its effect and the combined effect of both 
proteins ( p = 0.172 ), implying a clear dominance of tau 
over A β in this stage of the disease. Also, with respect 
to the homogeneous BEI model, tau presents p < 0.005 , 
while A β alone shows a much higher value ( p = 0.339 ), 
not allowing us to clearly distinguish between these two 
models. In the case of the MCI cohort, in Fig.  2E, we 
can observe that the effect of A β alone clearly gives the 
major contribution to the final combined fitting, rather 
than tau, with a p < 0.0003 between all cases. Finally, 
in the HC case in Fig. 2D, the effects of the A β and tau 
proteins are close to the homogeneous BEI model, with 
A β presenting a somewhat higher prevalence than tau. 
However, it is noticeable that the differences between 
this case and the previous one are small, showing that 
A β already plays an important role even in HC subjects.

All the results just described can be put in the context 
of the minimum detectable difference, with a value of 
0.055, which is the result of the statistical power calcu-
lations taking into account our cohort size, as described 
above. The results in Fig. 2D–E can be assessed in light 
of this result by observing that, in most of the cases, 
the difference between the average values is larger 
than the calculated minimum difference. For instance, 
for AD, the difference between the result computed 
for the combined A β and tau burden, and A β alone 
is 0.16, above our criterion. However, in this case, the 
difference of the combined burden with tau alone is 
0.03, below our threshold, thus leading to a statistically 
non-significant assessment. This same analysis can be 
reproduced for each of the other cases, clearly explain-
ing the significance of most of the results obtained, 

Fig. 5 Comparison between the homogeneous model, the optimum result obtained with the heterogeneous model (optim), and the same 
parameter values but with shuffled burdens. As can be seen, the differences in fit statistics between models are significant. In particular, for the AD 
cohort, the median phFCD correlation between model and data showed r < 0.1 for the heterogeneous model, and r ≈ 0.2 for the BEI model. In all 
subject groups, the difference between these two models is clear, with p < 0.0005
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and showing that our cohort size is sufficient for this 
analysis.

2D A β optimization
We used our model to verify the results by Stefanovski 
et  al.  [15] by limiting our analysis to the parameters of 
A β at the inhibitory level (i.e., the inhibitory bias bIAβ 
and scaling sIAβ parameters only, defined in Eq.  9). This 
way, we replicated the results from that study, even when 
using a different model (BEI model instead of the Jansen-
Rit model  [52]); a different expression for the burden, 
i.e., a linear approximation instead of a sigmoid; differ-
ent units, etc. (See Fig. 4.) By analyzing the obtained data 
at the optimal fit, the same behavior of decreasing the 
neuronal activity of inhibitory neurons with the scaling 
parameter sIAβ , corresponding to an increase in A β con-
centration, is observed, as shown in Fig. 6.

Discussion
In this paper, we studied the influence of the regional 
variability of two pathological proteins, namely A β and 
tau, on cortical activity and E/I balance in the context 
of AD. We used whole-brain dynamic modeling, which 
allowed us to disentangle the separate and synergistic 
effects of these two proteins in silico. The incorpora-
tion of such heterogeneous patterns of neuropathology 
into whole-brain models of neuronal dynamics has been 
made possible by the availability of in-vivo quantita-
tive PET imaging. We have shown that the heterogene-
ous model, which incorporates regional information on 

both types of neuropathological burdens more faithfully 
reproduces empirical properties of dynamic brain activ-
ity than the model with fixed and homogeneous param-
eters. Our findings highlight the central role of both 
types of burden in disturbing the E/I balance, supporting 
the hypothesis of hyperexcitation in AD. Regarding the 
individual influence of A β and tau on brain activity, our 
results have shown a dominance of A β influence on neu-
ral dynamics in earlier stages of AD (i.e., MCI) and even 
in healthy controls, while tau plays a larger role in later 
stages. These key findings highlight the prominent role of 
these pathological proteins in contributing to the abnor-
mal brain activity patterns in the course of AD [53].

How does burden heterogeneity shape neuronal 
dynamics?
We introduced burden heterogeneity into our dynami-
cal model by modifying the regional excitability of 
neural population activity. We achieved this by modi-
fying each brain region’s gain response function Mi 
of inhibitory and excitatory populations, i.e., the net 
excitability of the according population. This was 
done in accordance with previous works exploring the 
effect of regional parameters on E/I balance  [19], thus 
focusing on how the interaction of neuronal popula-
tions contributes to neuronal dynamics (i.e., FC or 
FCD). Our approach is different from the work by Ste-
fanovski et  al.  [15], where the A β burden was used to 
modulate regional E/I balance by negatively modulat-
ing the inhibitory time constant, slowing down synaptic 

Fig. 6 Excitatory and inhibitory mean firing rates as a function of the A β inhibitory scaling sIAβ , with all the other parameters of the model 
at the (averaged) fitted optimum values. For the purpose of clarity, the horizontal axis for the scaling has been taken as absolute values, to illustrate 
the behavior with increasing A β loads. The vertical axis shows the firing rates of both excitatory and inhibitory populations. It can be clearly 
seen that the net effect of the burden is to increase the overall region firing rate, measured at the excitatory population. For the sake of clarity, 
the inhibitory firing rate has been vertically inverted (negated) to show their decreased effect on the excitatory population, thus confirming 
previous findings [15]. The vertical discontinuous line shows the optimum found for sIAβ
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transmission and thus increasing excitatory activity and 
producing a higher output of the pyramidal cell popu-
lations, resulting in a local hyperexcitation with high 
A β loads. However, our approach, when limited to the 
effect of A β in the early stages of the disease, results 
in the same behavior of neural populations as a func-
tion of A β , similarly resulting in a net increase of the 
excitatory activity with increased A β burden. There are 
other approaches available to introduce heterogeneity, 
such as an adjustment of the inter-node connectivity 
to fit empirical and simulated FCs  [54]; or variations 
of within- and inter-area connectivity  [55]. However, 
based on the empirical evidence that the interplay of 
both burdens, A β and tau, severely disrupt normal neu-
ronal function, we decided to model their direct effect 
on the E/I balance.

In this paper, we have chosen to incorporate hetero-
geneity into the model by modulating population gain 
response functions H (E,I) . Here, adjusting the gain 
function parameter Mi allows us to demonstrate how 
local variations in the E/I balance will affect the net 
excitability of the population. We thus assume that 
changes in regional gain are the common final path-
ways of different neuropathology-related pathomecha-
nisms. These mechanisms might have an influence on 
neuronal populations, i.e., result in realistic representa-
tion of direct effects of A β and tau and also associated 
processes (i.e., non-direct effects).

In particular, we introduced regional variations of 
Mi as the product of linear terms consisting of a con-
stant (bias), and a scaling factor. This introduced eight 
degrees of freedom, which we could narrow down to 
six degrees of freedom by introducing constraints to 
the direction of effect based on previous research  [4]. 
In sum, our model was created based on assumptions 
that A β leads to GABAergic interneuron dysfunction 
and impaired glutamate reuptake, while tau leads to 
reduced synaptic neurotransmitter release in excita-
tory cells. This hypothesis-driven amount of degrees 
is substantially less than used in other models [54, 55], 
making a fast parameter optimization feasible, while 
ensuring sufficient biological realism. Furthermore, in 
all cases, the bias parameters for the different burdens 
(Fig.  4) were approximately 0, thus indicating that the 
influence of the bias parameters with respect to the 
homogeneous model can be ignored, further reduc-
ing computational complexity. The respective scaling 
parameters take non-negligible values, showing a lin-
ear relationship between A β and tau on neural dynam-
ics. We used Bayesian optimization using Gaussian 
Processes (see Methods) to address the challenge of 
multiple local minima that could trap traditional opti-
mization methods.

Evaluating A β and tau impact
A large body of scientific literature focused on link-
ing global and local brain dynamics to individual differ-
ences in cognitive performance scores  [12] and showed 
that patients with AD and MCI show less variation in 
neuronal connectivity during resting-state, and even 
presented benchmarks for predictive models based on 
resting-state fMRI, revealing biomarkers of individual 
psychological or clinical traits [13]. However, the pattern 
of neuronal connectivity alterations has been incom-
pletely understood. More recent work focused on the 
effect of A β on hyperexcitability, and how A β modu-
lates regional E/I balance, resulting in local hyperexcita-
tion in brain regions with high loads of A β  [15]. To our 
knowledge, no prior study has evaluated both types of 
neuropathological burdens, A β and tau, simultaneously, 
linking neuropathological data with dynamic whole-
brain modeling.

As explained in the Methods section, we compared 
the impact of each type of burden, in isolation or inter-
action, onto neural dynamics. We found that the model 
fitting optimum is systematically obtained by the inter-
action of both burdens, underlining the interaction of 
both proteins in disturbing neural activity. Also, we 
have found that for each condition (i.e., HC, MCI, or 
AD), each protein has a different impact on the brain 
dynamics. In the case of AD, A β has a small impact on 
the combined result, while tau alone had almost all of 
the impact, showing its dominance over A β in regard to 
generating abnormal brain dynamics. Also, in compari-
son to the homogeneous BEI model, we observed that tau 
is clearly distinguishable, but A β is not. Taken together, 
these results imply that we cannot distinguish between 
the effect on the brain activity of both proteins together 
vs. the effect of tau alone, while the effect of A β is clearly 
distinguishable from the combined effect. As a conse-
quence, this allows us to conclude that the impact of tau 
in the late stage of the disease (AD) is clearly dominant 
over A β . In contrast, in MCI, the influence of A β alone is 
clearly dominant over tau, see Fig. 2E. Finally, when stud-
ying the effect of both proteins in HC, we can observe 
that the effect of the A β and tau proteins is close to the 
homogeneous BEI model, with A β presenting a higher 
influence than tau. The influence of A β both in MCI 
patients as well as in HC shows that A β leads to a meas-
urable change in brain dynamics in elderly people, inde-
pendent of existing cognitive impairment. However, we 
acknowledge that on a pathophysiological level, there is a 
strong interplay between A β and tau, and further (causal) 
research is needed to clearly discern the role each protein 
plays in the generation of neuronal dysfunction. Despite 
our findings from model fitting, we acknowledge that 
we only observe the current influence of A β vs. tau in 



Page 15 of 18Patow et al. Alzheimer’s Research & Therapy          (2023) 15:210  

different disease stages in a cross-sectional cohort. Lon-
gitudinal examinations might also replicate the abundant 
evidence in the literature [4] that both proteins interplay 
a toxic feedback loop, which is ultimately responsible 
(perhaps among other factors) for the development of the 
disease.

Our analysis furthermore shows that edge-level meas-
ures of static FC offer loose constraints for model opti-
mization, showing comparably high fit statistics across a 
broad range of values of the global coupling parameter. 
In contrast, fitting to dynamical functional connectiv-
ity shows a clear optimum, mirroring similar results 
reported previously  [19]. We can conclude that fitting 
models to both static and dynamic properties is thus 
important for identifying an appropriate working point 
for each model.

Across all these properties, we observe that the model 
that incorporates the heterogeneous burden loads pro-
vides a better match to the data than the homogene-
ous BEI model, which does not incorporate a fitting of 
the gain response function of inhibitory and excitatory 
populations to the data. This shows that constraining 
regional heterogeneity by the protein burdens yields a 
more faithful replication of brain dynamics, as measured 
by empirical phFCD. The superiority of our model using 
heterogeneous, empirically estimated parameters, sug-
gests that regional heterogeneity plays a significant role 
in shaping the effects of Alzheimer’s disease on spon-
taneous BOLD dynamics. As we already mentioned, it 
must be noted that the differences in fit statistics between 
models are significant. These results suggest that these 
empirical fit statistics have a good capacity to tease apart 
dynamical differences between models, which gives the 
opportunity to disentangle the influence of different 
pathomechanisms in vivo.

Limitations
In our implementation, we used SC matrices derived 
from DWI. However, many factors such as myelination 
and diameter impact the conductivity of white matter 
tracts. Thus, assuming that coupling between different 
brain areas is not affected by this it may be a confounding 
factor.

On the other hand, DWI tractography already intro-
duces heterogeneities in the form of different connections 
between nodes, representing the actual physical connec-
tions between them. However, given the nature of these 
measures, it assumes that all connections have the same 
conductivity in the fiber tracts. This is not completely 
realistic and it has been shown [56, 57] that adding these 
additional degrees of freedom improves substantially the 
result. Effective connectivity is usually defined as a causal 
connectivity measure, meaning the directional influences 

of one brain area or neural element over another [56, 58]. 
An effective connectivity measure would not only result 
in a much better fitting but also would allow us to dis-
cern more precisely the damaged areas in the brain. We 
hypothesize that such areas would show decreased effec-
tive connectivity on a global level for slow waves, and 
thus a decreased propagation of information, as a direct 
effect of the damage produced by the different burdens. 
However, computing effective connectivity is a complex 
process that we left as an avenue for future work.

It is important to mention that we included sub-corti-
cal regions, which are particularly susceptible to off-tar-
get binding of the AV-1451 tracer, which may introduce a 
potential confound. For this study, we did not control the 
images for off-target binding. Recent studies show that, 
besides Tau tangles, AV-1451 also binds to neuromela-
nin, melanin, and other blood products  [59]. This is a 
genuine restriction of the PET imaging method and we 
are not aware of a standard that corrects this phenome-
non. Moreover, there is some controversy about whether 
this is always off-target binding or detecting tangles that 
other methods are not aware of [60]. In any case, it can be 
argued that the typical finding of this off-target binding 
affects AD, MCI, and controls to the same amount.

Conclusion
In summary, we have presented a whole-brain dynamic 
model connecting the main protein burdens, namely A β 
and tau, in different stages of AD and in HC. Our results 
not only reproduce previous research regarding E/I imbal-
ance in AD, but also shed further light on the relative 
impact of each type of burden during different disease 
stages, opening new avenues to focus research efforts. As 
a general conclusion, our study shows that theory-driven 
whole-brain modeling enables us to do research on disease 
mechanisms in silico and to empirically compare compet-
ing hypotheses against each other and thus complements 
data-driven modeling such as machine learning. Thus, 
whole-brain modeling can incorporate sufficient biological 
realism to contribute to improved diagnostic procedures 
(i.e., enable the use of fMRI for diagnosis) and to discover 
new therapies (e.g., by simulating novel treatments).
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