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Abstract 

Introduction  Although machine learning classifiers have been frequently used to detect Alzheimer’s disease (AD) 
based on structural brain MRI data, potential bias with respect to sex and age has not yet been addressed. Here, we 
examine a state-of-the-art AD classifier for potential sex and age bias even in the case of balanced training data.

Methods  Based on an age- and sex-balanced cohort of 432 subjects (306 healthy controls, 126 subjects with AD) 
extracted from the ADNI data base, we trained a convolutional neural network to detect AD in MRI brain scans and 
performed ten different random training-validation-test splits to increase robustness of the results. Classifier decisions 
for single subjects were explained using layer-wise relevance propagation.

Results  The classifier performed significantly better for women (balanced accuracy 87.58± 1.14% ) than for men 
( 79.05± 1.27% ). No significant differences were found in clinical AD scores, ruling out a disparity in disease severity as 
a cause for the performance difference. Analysis of the explanations revealed a larger variance in regional brain areas 
for male subjects compared to female subjects.

Discussion  The identified sex differences cannot be attributed to an imbalanced training dataset and therefore point 
to the importance of examining and reporting classifier performance across population subgroups to increase trans-
parency and algorithmic fairness. Collecting more data especially among underrepresented subgroups and balancing 
the dataset are important but do not always guarantee a fair outcome.
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Background
In recent years, a number of machine learning (ML) 
algorithms have been proposed to diagnose Alzheimer’s 
disease based on structural magnetic resonance imaging 
(MRI) [1, 2], and classification accuracies on par or even 
exceeding that of human experts have been reported [3]. 
One class of ML algorithms, namely convolutional neu-
ral networks (CNNs), have been shown to be very pow-
erful for this task because they are capable of operating 
directly on raw or minimally processed MRI data and do 
not need a previous feature extraction [2, 4].

With the increasing use of ML methods in both medi-
cal and other decision-making systems, algorithmic bias, 
such as sex, gender, or racial bias, has come into the focus 
of current research. One possible cause for these biases is 
an underlying imbalance in the dataset used for training 
the ML algorithms. Medical research has, for a long time, 
been conducted primarily on male patients [5]. Addition-
ally, even if female subjects are included, the results are 
often not analysed separately by sex or gender [6, 7]. This 
has, for example, led to underdiagnosis of heart attacks 
in women, as their symptoms can differ from those of 
male patients [8]. When unbalanced datasets are used to 
train ML algorithms, this can result in biased classifiers, 
with a consistent decrease in performance for popula-
tion groups underrepresented in the training data [9, 10]. 
Several methods have been developed to understand and 
mitigate these biases. One simple and straightforward 
method is to ensure that the training datasets are bal-
anced and representative across all relevant population 
subgroups. This can lead to a performance increase for 
underrepresented groups, while not necessarily nega-
tively affecting performance for the overrepresented 
group [9, 11]. However, using a balanced dataset alone 
has been shown to not always be sufficient to prevent 
biased classification results as shown in a chest X-ray 
classification task recently [12]. Here, the differences in 
true-positive rate (TPR) across different subgroups are 
not correlated with the subgroups’ proportional disease 
membership and having the same portion of images 
within a label might not be enough to mitigate the result-
ing diagnostic bias [12].

From a clinical perspective, sex has an important 
impact on the presentation of AD. Women have a higher 
lifetime risk of developing AD, and also show faster 
ageing-related cognitive deterioration than men [13]. 
The atrophy rate both of the hippocampus and the over-
all brain matter is also higher for women than for men 
[14, 15]. Additionally, for women, pathological changes 
in the brain are more likely to result in clinical AD, with 
men being more resilient to the pathophysiological pro-
cesses of AD [16, 17]. However, sex differences in the 

performance of ML-based classification of AD have so far 
not systematically been investigated.

Explainable artificial intelligence (AI) has become an 
important topic in recent years as more ML models are 
being implemented for medical applications [18]. For 
image data in combination with CNNs, the most prom-
ising approach refers to so-called heatmap or attribution 
methods that exploit the gradient or the architecture of 
the model to compute pixel- or voxel-wise explanations 
[19]. Notably, for each input image, a heatmap is gener-
ated that indicates the importance or relevance of each 
pixel or voxel for the final classification decision based 
on the respective model. In the medical context, it means 
that these methods provide a visual representation of the 
area that the model utilises for each individual patient, 
but do not provide any information on what is used 
within this area [4, 20].

In this study, we examine a state-of-the-art CNN clas-
sifier for MRI-based AD detection with respect to sex 
differences. To reduce the effects of possible biases in 
the training dataset, we balanced the training set to 
contain an equal number of women and men and used 
undersampling to equalise the female and male age dis-
tributions. We hypothesise that—in the case of balanced 
training data—there is no sex difference in detecting 
AD. To explain the classifier decisions, we use the Layer-
Wise Relevance Propagation algorithm (LRP) [21], which 
produces an individual heatmap for each input image, 
showing the relevance of each voxel for the final classi-
fier decision, and has been shown to give reasonable 
explanations in the context of AD [4, 22]. In particular, a 
significant correlation between local LRP relevance and 
atrophy in the hippocampus has been reported [4].

Methods
Data set
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clini-
cal and neuropsychological assessment can be combined 
to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

Inclusion criteria
For this analysis, we included subjects from all ADNI 
study phases which were, at the time of their baseline 
visit, either healthy controls (HC) or diagnosed with AD 



Page 3 of 13Klingenberg et al. Alzheimer’s Research & Therapy           (2023) 15:84 	

using the official diagnoses provided by ADNI1. Subjects 
which were labelled as HC at their first visit, but at a 
later visit were diagnosed with either MCI or AD (or vice 
versa) were excluded from the analysis. This resulted in 
a population size of 573 subjects (406 HC, 167 AD). For 
each subject, up to three MRI scans from different time 
points were included in order to increase the sample size. 
To avoid data leakage between multiple scans originating 
from the same subject, we performed the splitting for the 
CNN training on the subject level and not on the image 
level (see below).

In the remaining population, younger female subjects 
are overrepresented [23]. To ensure that there is no sig-
nificant difference in the age distributions of female and 
male subjects, we used undersampling based on subject 
age, diagnosis, and sex. To this end, we divided the popu-
lation into bins containing subjects of a specific age range 
(in 5-year increments) and diagnosis (HC or AD). From 
each bin, we then randomly dropped subjects until the 
number of female and male subjects in the bin was equal. 
The resulting population contained 432 subjects (306 
HC, 126 AD) with no significant differences in their age 
distributions (two-sample t-test: p > 0.75 ). Table 1 gives 
full information about the size, age distribution, and clin-
ical measures of the resulting dataset. The precise values 
vary slightly depending on the specific subjects removed 
during the undersampling step.

Splitting
We then used a stratified split based on subject age range, 
sex, and diagnosis to divide the population into a train-
ing set (216 HC, 90 AD) and validation and test sets (45 
HC, 18 AD each). Splitting on the subject level ensures 

independence between training and test data, as splitting 
on the image level may lead to data leakage and unreli-
able results [2].

For datasets of this size, the results can vary signifi-
cantly depending on the specific dataset split [23]. We 
therefore repeated the undersampling and splitting pro-
cess ten times with different random seeds and trained 
and evaluated the classifier on all dataset splits. Depend-
ing on the number of scans taken of the subjects remain-
ing after the undersampling, the training set size ranged 
from 758 to 834 images. For the test sets, we used only 
the baseline scan of each subject, to prevent the pres-
ence of multiple scans of the same subject distorting the 
results.

Image preprocessing
For our analysis, we downloaded T1-weighted struc-
tural MRI scans of all selected subjects. The scans were 
acquired at multiple imaging sites at a magnetic field 
strength of 3  T (for scanner and sequence parameters, 
we refer the reader to the ADNI imaging protocols2). 
The images had already been preprocessed with gradi-
ent non-linearity correction (gradwarping) and intensity 
inhomogeneity correction and were scaled for gradient 
drift using the phantom data. We did not further harmo-
nise the data.

We recently showed that, for a CNN trained on a 
relatively small dataset of MRI brain scans, using a 
non-linear registration method gives the best results 
compared to unregistered or linearly registered images 
[23]. Accordingly, we used the non-linear SyN algorithm 
[24] as implemented by Advanced Normalization Tools 
(ANTs)3 to register all scans to the 1mm T1 version of 
the MNI-ICBM152 reference brain. We chose SyN over 
other non-linear registration algorithms because of its 
consistently good performance reported by Klein et  al. 
[25]. After registration, we used the FSL Brain Extraction 
Tool (fsl-bet) [26, 27] to remove the skull and soft tissue 
from the images.

Network architecture and training
For this analysis, we used the convolutional neural net-
work architecture proposed by Böhle et al. [4]. This is a 
standard CNN with four convolutional layers, each com-
prising 8, 16, 32, and 64 filters respectively, with a filter 
size of 3×3×3. Each of these layers is followed by batch 
normalisation and max pooling with window size 2, 3, 
2, and 3. The convolutional layers are followed by two 
fully connected layers of sizes 128 and 2, with dropout 

Table 1  Population characteristics. This table gives information 
about the demographics and clinical measures of one of the ten 
datasets created from the base study population. As different 
subjects are selected for each split, the values for other splits can 
vary slightly. All values are given as mean ± SD

Female Male

HC AD HC AD

#subjects 153 63 153 63

#images 418 175 479 182

Age (years) 73.8± 6.3 75.7± 7.3 73.8± 6.4 75.4± 6.9

CDR-SB 0.01± 0.07 4.63± 1.93 0.03± 0.15 4.68± 1.57

ADAS13 9.14± 4.49 30.58± 7.65 10.15± 4.53 31.56± 7.59

MMSE 29.17± 1.05 22.88± 2.54 28.99± 1.23 22.77± 2.04

1  https://​clini​caltr​ials.​gov/​ct2/​show/​NCT00​106899

2  https://​adni.​loni.​usc.​edu/​metho​ds/​docum​ents/​mri-​proto​cols/
3  https://​stnava.​github.​io/​ANTs/

https://clinicaltrials.gov/ct2/show/NCT00106899
https://adni.loni.usc.edu/methods/documents/mri-protocols/
https://stnava.github.io/ANTs/
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( p = 0.4 ) being applied before both of these layers. The 
2-unit layer uses a softmax function and provides the 
model output, with the two units giving the class scores 
for HC and AD.

The network was trained using the Adam optimiser 
[28] and cross-entropy loss with a learning rate and 
weight decay of 10−4 . We used a batch size of 16 images, 
which was limited by the available GPU memory. During 
training, the data was augmented by flipping the images 
across the sagittal plane and translating along the sagit-
tal axis by up to two voxels in either direction, with both 
methods being standard data augmentation methods for 
deep learning methods performing medical image analy-
sis [29, 30].

Training was stopped once the balanced accuracy 
achieved by the model on the validation set did not 
improve over eight epochs, after which the model state 
with the highest validation accuracy was evaluated on the 
test set. To achieve robust results and reduce the impact 
of lucky or unlucky data splits, we repeated the training 
process five times for each of the ten dataset splits, giving 
a total of 50 different models.

Model evaluation and comparison to clinical measures
To evaluate whether there are statistically significant 
differences in the classifier performance for women 
and men, we used independent samples t-tests on the 
balanced accuracy, sensitivity, and specificity values. 
We also calculated the receiver operating characteris-
tic (ROC) curves, which show the relationship between 
false-positive rate and true-positive rate, for women and 
men separately. This will allow to determine whether 
choosing different classification thresholds for women 
and men would help to achieve equal performance on the 
two subgroups.

We also examined the distributions of three differ-
ent clinical measures of disease severity among men 
and women: the Clinical Dementia Rating (CDR) sum 
of boxes score [31], the Alzheimer’s Disease Assessment 
Scale (ADAS13) [32], and the Mini-Mental State Exami-
nation (MMSE) [33]. These measures have been shown 
to be correlated with both the brain atrophy rate and the 
ventricular enlargement rate [34] and can therefore pro-
vide insight into the degree of AD evidence present in the 
brain scans of our population. If there were a significant 
difference in the distributions of these measures between 
women and men, this could also explain a difference in 
classifier performance, as the differing disease sever-
ity could manifest as different degrees of structural AD 
evidence. To achieve robust results for this analysis, we 
used data from women and men, but only those subjects 
which appeared in at least two of the ten dataset splits.

Layer‑wise relevance propagation
For explaining the classifier’s decision, we used the 
layer-wise relevance propagation (LRP) algorithm by 
Bach et al. [21, 35], which produces heatmaps showing 
the relevance of each individual input voxel for the final 
classification.

To achieve this, LRP considers how the activation of 
each node in the model contributes to the final output 
class score layer by layer. The initial relevance value 
for a specific class is simply the activation of the cor-
responding output node. This relevance is then dis-
tributed to all nodes in the preceding layer which 
contributed to the activation of the output node. The 
distribution follows the conservation rule

where R(l+1)
j  is the relevance of node j in layer l + 1 , 

and R(l,l+1)
i←j  is the share of relevance that node i in layer 

l receives from node j. The total relevance of a node in a 
specific layer is then the sum of the relevance it acquires 
from all nodes in the following layer. This ensures that 
the total amount of relevance in the input layer is pre-
cisely the output class score.

There are several different ways in which the rel-
evance can be distributed through the model. For our 
analysis, we chose the β-rule [36], given by

which allows for separate treatment of the positive and 
inhibitory contributions z+/−

ij  by changing the parameter 
β . A value of β = 0 produces heatmaps showing only pos-
itive contributions (meaning evidence for the presence of 
AD), whereas choosing β > 0 includes inhibitory effects 
produced by evidence against AD. For a full description 
of the LRP algorithm and the β-rule, we refer the reader 
to Bach et al. [21] and Binder et al. [36].

When using LRP to visualise the decisions of an AD-
detecting CNN, the resulting heatmaps are relatively 
robust to the chosen β-value, with the only change 
being increasing sparseness for higher values [4]. Addi-
tionally, ignoring negative contributions might give 
more informative results, as AD can, especially in its 
early stages, affect the brain in a highly localised man-
ner. Surrounding healthy tissue could therefore mask 
the positive contributions of small areas of evidence for 
AD. We have accordingly limited our analysis to using 
a value of β = 0 , as this leads to heatmaps showing all 
positive contributions, regardless of possible surround-
ing negative evidence, giving the final distribution rule

(1)
i

R
(l,l+1)
i←j = R

(l+1)
j

(2)R
(l,l+1)
i←j =

(

(1+ β)
z+ij

z+j
− β

z−ij

z−j

)

R
(l+1)
j
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Region‑wise relevance analysis
To enable a quantitative analysis of the resulting heat-
maps, we used the Neuromorphometrics Scalable Brain 
Atlas [37] to determine the amount of relevance pre-
sent in the different brain regions. Simply summing the 
relevances of all voxels of a brain region naturally gives 
a measure that is strongly correlated to the region size 
[4]. We therefore normalised the relevance sum of each 
brain region by its number of voxels to determine its 
relevance density. This is a more informative measure, 
as a low amount of relevance spread out over a large 
area might be simply due to statistical noise, while a 
strongly localised cluster of voxels with high relevance 
could indicate the presence of structural changes as 
evidence for AD.

For the analysis, we selected a subset of brain regions 
which have been shown to have high susceptibility 
to structural changes due to AD. Among others, we 
included areas of the limbic system (such as the hip-
pocampus, entorhinal area, and amygdala), the ventri-
cles, and the cingulate gyrus. For comparison, we also 
included the motor cortex, which is among the last 
areas to be affected by AD [38].

(3)R
(l,l+1)
i←j =

z+ij

z+j
R
(l+1)
j

Results
Classifier performance
The balanced accuracy, sensitivity, and specificity 
achieved by the classifier are shown in Fig. 1 for women 
and men separately. The given results are averaged over 
all 50 runs (five runs for each of the ten different data-
set splits), with the error bars showing the standard error 
of the mean. A difference in performance for women 
and men is clearly visible, with a balanced accuracy of 
87.58± 1.14% for women and 79.05± 1.27% for men. 
While the performance for women is better overall, 
the results seem to also be more robust, as determined 
by the lower standard error. A similar pattern holds for 
the sensitivity ( 83.77± 2.34% for women, 71.10± 2.13% 
for men) and specificity ( 91.38± 0.97% for women, 
86.99± 1.29% for men). All differences are statistically 
significant, with t-test p-values of p = 2.4 · 10−6 for the 
balanced accuracy, p = 1.2 · 10−4 for the sensitivity, and 
p = 7.8 · 10−3 for the specificity.

Figure 2 shows the ROC curves separately for women 
and men, averaged over all trained models. Again, a 
clear difference is visible, with an area under curve of 
0.950± 0.007 for women and 0.862± 0.014 for men.

A post hoc analysis revealed that when we train a 
model on a sex-balanced dataset of half the size to gen-
erate a comparison baseline for sex-specific models, the 
classifier suffered a large drop in accuracy. Thus, due to 
the limited sample size, a subgroup analysis is not feasible 
here.

Fig. 1  Classifier performance. The balanced accuracy, sensitivity, and specificity of the classifier for women and men averaged over all runs for all 
splits. The error bars show the standard error of the mean
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Clinical measures
The distributions of the clinical AD measures in our data-
set are presented in Fig. 3. The top row of plots show the 
relationship between the three clinical measures and the 

raw output of the classifier, i.e. after applying the soft-
max function. A clear correlation can be seen for all three 
measures, with scores indicating more severe disease 
leading to a higher model output.

Fig. 2  Receiver operating characteristic curve. The average ROC curve of the classifier when separately evaluated on women and men. The ROC 
curve was averaged over all runs for all splits, with the shaded area showing the standard error of the mean. The area under curve (AUC) is given in 
the legend

Fig. 3  Clinical measures. Shown in the top row of plots is the relationship between the average model output and each of the three clinical 
measures (CDR sum of boxes, ADAS-Cog-13 and MMSE). While calculating the average output, only subjects appearing in at least two splits 
were taken into account. Overlaid in red is a linear regression, with the correlation coefficient also given. The plots on the bottom row show the 
distribution of the three clinical measures in the dataset. Note that, because this includes all subjects, the boxplot whiskers can extend past the 
values visible in the top plots
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The bottom row of plots gives the distribution of the 
clinical measures among women and men after balanc-
ing the dataset for age and sex. There are no significant 
differences between the CDR sum of boxes and MMSE 
scores of women and men for any of the ten dataset 
splits. The same is true for the ADAS13 scores of healthy 
subjects. For AD subjects, we found a significant differ-
ence in six out of the ten splits, but these differences were 
weak, with a p-score of 0.05 > p > 0.01 in all of those 
cases but one ( p = 0.006).

Visualisation
In Fig. 4, we show the average heatmaps of all classifier 
decisions, separately for healthy and affected women and 
men. The heatmaps are overlaid over the MNI-ICBM152 
template, only showing the top 10% of relevance values 
compared to the average AD heatmap. A coronal slice at 
y = 120 shows areas of the frontal and temporal lobes, 
including the hippocampus and parahippocampal gyrus, 
and a sagittal slice at x = 85 gives a view of, among oth-
ers, the lateral ventricles, brain stem, and cerebellum.

For AD subjects, large amounts of relevance can be 
seen in and around the hippocampus and other areas of 
the temporal lobe. Significant relevance is also present 
around the lateral ventricle. There is only little relevance 
present in healthy subjects. No clear difference is visible 
between the average heatmaps for women and men.

To give a sense for the inter-patient variability of the 
heatmaps, we show the results for four individual sub-
jects in Fig. 5. We selected four AD subjects, two women 

(68 and 88 years) and two men (67 and 87 years), and a 
single model which correctly classified all four subjects 
with high confidence (AD class score > 0.97 ). It can be 
seen that the heatmaps are highly individual to each sub-
ject, although the general pattern of strong relevance in 
the temporal lobe and around the lateral ventricles still 
holds. The classifier also places significant amounts of 
relevance on individual cortices, which is well visible in 
all subjects but especially pronounced in the younger 
male brain, which shows severe atrophy. The younger 
male brain also shows a strong enlargement of the lateral 
ventricles. The classifier correctly identifies this, as can 
be seen by the relevance accurately placed on the border 
of the enlarged ventricle.

Relevance analysis
Figure 6 shows the relevance attributed by the LRP algo-
rithm to several brain areas for female and male AD 
patients.

The highest relevance densities are found in areas that 
are part of the limbic system, such as the entorhinal area, 
the hippocampus, and the amygdala. The motor cortex, 
which is only affected in later stages of AD, has one of the 
lowest relevance densities among the examined regions.

The results for female and male patients are similar, 
with a close match in the order of area relevance density. 
However, the relevance density for women is consistently 
higher than for men.

We also show the results for two individual subjects, 
specifically the young female and male subjects from 

Fig. 4  Average relevance heatmaps. The average relevance heatmaps across all subjects and all classifiers are shown separately for women (top 
row) and men (bottom row), as well as Alzheimer’s patients (left column) and healthy subjects (right column). The colour bar was chosen according 
to the relevance values of the average AD subject, with only the top 10% of values being shown to highlight the most relevant areas. For reference, 
the heatmaps are shown over the MNI-ICBM152 reference brain we used for registering the input images
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Fig.  5. This illustrates that the distribution of relevance 
over different brain areas can vary significantly between 
subjects. For the female subject, the relevance density is 
at the top of its range for hippocampus, parahippocampal 
gyrus, and amygdala, matching the visual impression of 
the heatmap.

The male patient has values around or slightly above 
average for most areas, except for the cingulate gyrus, 
which is among the highest values we found.

The bottom plot shows the coefficient of variation of 
the relevance density, i.e. its standard deviation divided 
by its mean. This measures the inter-patient variability of 
the relevance of the different brain areas. The coefficient 
is consistently larger for men by 10–30%; in other words, 
the distribution of relevance is more uniform for women 
than for men.

Discussion
Despite balancing our dataset for subject sex and age, 
we found a statistically significant difference in classifier 
performance for women and men, with women having a 
higher balanced accuracy, sensitivity, and specificity. The 
classifier also achieves a higher area under the ROC curve 
for women, showing that the difference is not just due to 

a suboptimal threshold for men. There is no threshold 
value that would lead to equal performance for women 
and men, as their ROC curves do not intersect. Addition-
ally, choosing individual thresholds for each population 
subgroup may not be a feasible solution in other, more 
complicated datasets with multiple intersectional sub-
groups and small subpopulations [10].

While an imbalance in the training data has been iden-
tified to be a possible cause of sex bias [9], other research 
has shown that the inverse is not true, with no signifi-
cant correlation between classifier performance dispar-
ity and data imbalance ratio [12]. Our findings mirror 
this, as even a perfectly balanced dataset containing the 
same number of women and men does not lead to equal 
performance.

We have also examined a possible imbalance between 
women and men of disease severity as measured by sev-
eral cognitive scoring systems. However, after equal-
ising the age distributions, we did not find significant 
differences in disease severity for CDR and MMSE. The 
observed differences in ADAS13 scores for some splits 
indicated more severe cases in men, which would seem 
to indicate an easier diagnosis rather than the observed 
worse performance. While we have therefore excluded 

Fig. 5  Individual relevance heatmaps. The relevance heatmaps for four individual AD patients are shown, each overlaid over the corresponding 
brain scan. All scans were classified by the same model, to enable a comparison of inter-subject differences. We selected two female (68 and 88 
years) and two male subjects (67 and 87 years), which were correctly diagnosed by the classifier with high confidence (AD class score > 0.97). The 
colour bar was chosen as in Fig. 4, based on the relevance values of the average AD subject heatmap

(See figure on next page.)
Fig. 6  Relevance by area for AD subjects. The top plot shows the size-normalised relevance for selected brain areas for female and male AD 
subjects. The mean values are displayed as dots, with the shaded areas showing the relevance density distribution across all AD subjects. The dotted 
and dashed lines show the values for two individual subjects, namely the young female (Patient 1) and young male (Patient 2) subjects for which 
the heatmaps are shown in Fig. 5. The bottom plot gives the coefficient of variation, i.e. the standard deviation divided by the mean of the relevance 
density for the same brain areas
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Fig. 6  (See legend on previous page.)
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several possible sources of bias, we cannot rule out the 
presence of other confounding variables. Future research 
should investigate this further, looking for example at 
biomarkers of disease progression, such as the levels of 
amyloid beta and tau proteins. For example, Gamberger 
et al. have shown that when clustering the ADNI popula-
tion based on biological and clinical descriptors, female 
AD patients form one coherent group, but male AD 
patients can be divided into two distinct clusters [39].

The observed performance difference may also be 
rooted in the different ways in which AD affects women 
and men. Female AD patients show both faster rates of 
cognitive decline and larger atrophy rates in limbic sys-
tem areas specifically as well as overall brain matter when 
compared to male AD patients of the same age [14, 15, 
40]. This implies that a perfect age-matching between 
women and men in the training data might actually have 
a detrimental effect in terms of classifier bias, as consist-
ently more severe cases of AD in women would make 
them easier to diagnose. However, this hypothesis is con-
tradicted by our analysis of the clinical measures of our 
study population, which showed no significant difference 
in disease severity between women and men.

On the other hand, men have been shown to have a 
higher resilience to the pathophysiological processes of 
AD compared to women [16, 17]. This means, that in 
cognitively intact older men, the presence of biomarkers 
for AD such as amyloid load has a lower influence on the 
clinical presentation than for women. As a consequence, 
the healthy male subjects in our study population might 
have more structural AD evidence than healthy female 
subjects, making the distinction between male healthy 
and AD subjects harder for the classifier. Because the 
increased amount of AD biomarkers does not lead to 
more severe cognitive symptoms in this case, this effect 
would not be visible in our analysis of clinical measures. 
Additionally, previous research has shown that men are 
at higher risk for cerebrovascular disease [41]. This could 
lead to higher prevalence in vascular cognitive impair-
ment in men [42]. Even though the ADNI study inclusion 
criterion was AD-related dementia, dementia of vascu-
lar origin could be more present in the male cohort and 
might explain greater ventricle enlargement in men com-
pared to women in our findings.

Regarding the heatmap results, our findings are in line 
with previous studies showing that LRP heatmaps are 
noisy and asymmetric [4, 22]. Moreover, a recent study 
showed that CNNs are susceptible to spatial bias, mainly 
due to architectural choices such as padding, resulting in 
activation blind spots in feature maps [43]. The stochastic 
nature of model training is expected to cause some ran-
domness in the results; hence, the lack of symmetry is 
not surprising.

The heatmaps show that the classifier focuses on areas 
where structural changes due to AD are expected. Sig-
nificant relevance being seen in the lateral ventricles in 
AD patients is reasonable as ventricular enlargement is 
a reliable measure of AD progression [44]. Additionally, 
the individual heatmaps agree with research showing 
that measures such as sulcal width and cortical thick-
ness around sulci are good neuroanatomical markers 
of AD [45, 46]. Changes in periventricular white matter 
were shown to correlate with elevated cerebral amyloid 
[47] and cognitive decline [48]. Our findings that the 
relevance heatmaps focus on periventricular white mat-
ter could be capturing those clinical markers of AD. Our 
results showing relevance in the brainstem regions are in 
line with previous research showing brainstem atrophy in 
the early stages of AD [49, 50]. Overall, a visual inspec-
tion of the relevance heatmaps reveals no clear reason 
for the performance difference between women and 
men.The variability across subjects of different ages and 
between specific classifier models seems to eclipse any 
possible systematic difference between female and male 
heatmaps.

In the quantitative relevance analysis, the overall results 
are as expected from clinical research and match the vis-
ual impression of the presented heatmaps. The consist-
ently higher relevance density for women compared to 
men indicates that the network was generally more con-
fident when classifying women, as a higher model output 
results in a larger amount of relevance being distributed 
backwards through the network and thus a larger total 
relevance in the heatmap.

We found a larger variation in how the relevance is 
distributed among the brain areas for male AD subjects 
compared to female AD subjects. Additionally, the stand-
ard error of the performance metrics as given in Figs. 1 
and 2 is slightly larger for men than for women, indicat-
ing a larger variation between different runs for male 
than for female subjects. This seems to reflect studies 
showing that there are general structural differences in 
the brains of women and men. These differences cover 
overall brain size, cortical thickness, and grey matter 
volume in specific brain areas, with men generally hav-
ing a greater variance in these structural measures [51, 
52]. However, other studies have questioned this, show-
ing that, when corrected for brain size, sex accounts only 
for a small percentage of the structural variance, and 
that female and male brains are structurally very similar 
[53–55]. Men also have been shown to have more het-
erogeneous patterns of AD presentation compared to 
women. For instance, recent research has shown that the 
hippocampal sparing subtype of AD was more prevalent 
in men, which was associated with more white matter 
lesions [56].
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We would like to point out the following limitations. 
First, we limited our analysis to only one specific network 
architecture, and thus, it is not clear to what extent these 
results will generalise to other classifiers, with either 
small changes such as an increase in the number of lay-
ers, or larger alterations to the entire network architec-
ture. However, we used here a standard CNN that has 
been shown to be useful for AD classification before [4], 
and sex differences in classification accuracy have not yet 
been investigated.

Second, our dataset was quite small in terms of typical 
deep learning applications, with the training set size of 
around 800 images being limited by the available neuro-
imaging studies. Repeating our analyses on a larger data-
set might alleviate the larger variance in male subjects. 
However, the ADNI study is currently the largest avail-
able dataset of brain MRI scans for AD, and the effect of 
larger male variance is already reduced due to our use of 
multiple dataset splits and several training runs per split. 
Given that deep learning analyses are very sensitive to the 
amount of training data, it was also not feasible to train 
sex-specific models (and models with different ratios 
of women/men) to additionally explore the influence of 
training set biases onto accuracy. Future studies might 
address this point using larger (not yet available) datasets.

Third, the preprocessing pipeline including skull strip-
ping as well as the chosen brain atlas for quantitative 
analyses could be better adapted to the sample at hand 
by using age- and disease-specific templates [57, 58]. 
For instance, the high relevance density in the cingu-
late gyrus of the male patient from Fig. 5 is likely to be 
misattributed. As this patient has enlarged lateral ven-
tricles, the boundaries of these ventricles do not match 
the brain atlas and instead extend into surrounding atlas 
areas. While the heatmap shows that the network cor-
rectly identifies the ventricle boundaries, the area-wise 
relevance analysis is based on the brain atlas and there-
fore can not take patient specifics into regard. However, 
disease-specific templates have the disadvantage to intro-
duce prior information into the classification task, and 
thus might reduce the clinical significance of results. We 
therefore decided to keep the processing pipeline as gen-
eral as possible.

And lastly, we did not employ an external validation 
dataset, instead generating both the training and vali-
dation datasets from the same study population (where 
we focused on clear AD and HC cases). This is common 
practice, as only few studies are testing the generalisabil-
ity of classification models to external validation data, 
with results varying from only minor differences to com-
paratively large performance decreases [2, 59]. However, 
if the studies that collect the validation data adhere to the 
same inclusion criteria, the classifier performance would 

be similar to that on the initial dataset [2]. While inde-
pendent and external validation of any classification and 
prediction models used in a healthcare setting is impor-
tant before they are applied in clinical decision-making, 
the goal of our study was to point out performance dif-
ferences between population subgroups. We believe 
that for this purpose, the cross-validation that we used 
by creating several different dataset splits was an appro-
priate choice. Yet, future studies should investigate how 
our findings apply across independent datasets, and with 
respect to changes in population (including for example 
MCI patients).

Conclusion
In this study, we trained a CNN to detect AD on 3D MRI 
brain scans. Despite carefully balancing the training data 
for subject sex and age, we found that the classifier per-
forms significantly better on women than on men. The 
difference was neither explainable by a suboptimal cut-
off point, nor a difference in disease severity between 
women and men, as measured by cognitive assessments. 
We found some evidence indicating a higher variability 
among men, suggesting that controlling for subject sex 
and age might not be enough to ensure a truly balanced 
dataset. Even when accounting for other confounding 
variables, differing clinical manifestations of diseases for 
different population subgroups may make equal perfor-
mance for all subgroups an unreachable goal. Collecting 
more data across subgroups and having a balanced data-
set are important measures towards fairness of the algo-
rithms; however, those measures are not always enough 
to provide a fair outcome. Therefore, when using ML 
methods in medical applications, care should be taken 
to evaluate and report bias in the resulting classifier. 
This would strengthen the transparency and fairness of 
the chosen methods and increase their chance of being 
adopted as diagnostic tools.
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