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pleiotropic loci between Alzheimer’s
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Abstract

Background: Identification of genetic risk factors that are shared between Alzheimer’s disease (AD) and other traits,
i.e., pleiotropy, can help improve our understanding of the etiology of AD and potentially detect new therapeutic
targets. Previous epidemiological correlations observed between cardiometabolic traits and AD led us to assess the
pleiotropy between these traits.

Methods: We performed a set of bivariate genome-wide association studies coupled with colocalization analysis to
identify loci that are shared between AD and eleven cardiometabolic traits. For each of these loci, we performed
colocalization with Genotype-Tissue Expression (GTEx) project expression quantitative trait loci (eQTL) to identify
candidate causal genes.

Results: We identified three previously unreported pleiotropic trait associations at known AD loci as well as four
novel pleiotropic loci. One associated locus was tagged by a low-frequency coding variant in the gene DOCK4 and
is potentially implicated in its alternative splicing. Colocalization with GTEx eQTL data identified additional
candidate genes for the loci we detected, including ACE, the target of the hypertensive drug class of ACE inhibitors.
We found that the allele associated with decreased ACE expression in brain tissue was also associated with
increased risk of AD, providing human genetic evidence of a potential increase in AD risk from use of an
established anti-hypertensive therapeutic.

Conclusion: Our results support a complex genetic relationship between AD and these cardiometabolic traits, and
the candidate causal genes identified suggest that blood pressure and immune response play a role in the
pleiotropy between these traits.
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Background
Studies have consistently found a positive epidemio-
logical correlation between Alzheimer’s disease (AD)
and cardiometabolic traits, yet the biological mecha-
nisms behind this correlation is not well understood [1–
4]. A leading hypothesis is that this correlation is due to
shared genetic influence, or pleiotropy, between AD and
cardiometabolic traits [4]. By identifying pleiotropic loci
between these traits, we can (i) identify new therapeutic
targets or opportunities for drug repurposing, (ii) predict
potential side effects, and (iii) better understand the eti-
ology of these complex traits. The identification of new
therapeutic targets for AD is of particular importance
since AD afflicts approximately 50 million people, and
there exist only a handful of therapeutics available for
AD that have only limited efficacy in slowing the pro-
gression of the disease [5].
Pleiotropy has been an area of both theoretical and

empirical study at least since the beginning of the twen-
tieth century [6–8]. However, the topic has received
renewed attention, given the pervasiveness of pleiotropy
that has been uncovered through genome-wide associ-
ation studies (GWAS) [8–10]. Recent methods and ana-
lysis have sought to characterize the extent of the
phenomenon throughout the genome [8], quantifying
pairwise genetic correlation across a battery of traits [8,
11], exploiting pleiotropy to perform causal inference in
the framework of Mendelian randomization [8, 12], or
statistically co-localizing association signals across two
or more traits [13, 14]. These methods and publicly
available GWAS summary statistics enable studies to
dissect the shared genetic etiology between AD and car-
diometabolic traits. Due to the epidemiological correl-
ation between AD and cardiometabolic traits, coupled
with the fact that many cardiometabolic traits are genet-
ically correlated with one another, additional broader-
scale pleiotropic studies are warranted, and recently the
field has begun to do so [4, 11].
Statistical methods for detecting pleiotropy use the

definition of a single locus associated with two or more
traits, and these methods are generally intended to de-
tect loci that have a single genetic variant underlying the
shared heritability at the locus. However, recent studies
have shown that at some pleiotropic loci there is no
shared causal SNP, but instead different SNPs are causal
for the different traits. These loci are associated with
multiple traits but there is no shared causal genetic vari-
ant behind the associations [9, 15]. For this reason, we
consider here a more stringent definition of pleiotropy:
loci that are associated with two or more traits, and
where the statistical data provides evidence of a shared
causal genetic variant. We used colocalization analysis to
identify which loci appear to share causal genetic vari-
ants and which appear to be cases of spurious pleiotropy

[8, 13]. There are two models of pleiotropy for this sce-
nario [8]. The first is horizontal pleiotropy, where a gen-
etic variant has a direct effect on two or more traits. The
other is vertical pleiotropy, where a genetic variant has a
direct effect on a trait and a mediated effect on a second
trait through the first trait [8].
In this study, we used summary statistics from the lar-

gest publicly available single-trait GWAS to investigate
pleiotropy between AD and eleven cardiometabolic traits
using the metaMANOVA bivariate GWAS method
followed by colocalization analysis [16]. This bivariate
GWAS method takes summary statistics for two traits as
input and performs a GWAS for the pair of traits, while
taking the correlation across association statistics into
account [16]. We used this method to perform two
different experiments. The first experiment was an “AD-
centric” analysis, intended to detect loci that are
associated with AD, but previously not shown to be
pleiotropic for cardiometabolic traits. We also performed
a locus discovery analysis to discover loci that are not
previously reported to be associated with either AD or
the cardiometabolic trait.

Methods
We performed two bivariate GWAS experiments
intended to detect loci that are pleiotropic between AD
and cardiometabolic traits. For ease of reproducibility,
we first performed a pairwise bivariate GWAS between
AD and each of eleven cardiometabolic traits for both
experiments. We then assessed whether there was evi-
dence of a shared causal SNP at each bivariate signifi-
cant locus by performing a colocalization analysis
between the AD and cardiometabolic trait signals. To
identify candidate causal genes, we performed colocaliza-
tion analyses between the pleiotropic signals and single-
tissue eQTLs from Genotype-Tissue Expression (GTEx)
project v7 [13].

Bivariate GWAS
We used the summary statistics from publicly available
single-trait GWAS to perform pairwise metaMANOVA
bivariate GWAS between AD [17] and the following car-
diometabolic traits: coronary heart disease (CHD) [18],
type II diabetes (T2D) [19], systolic blood pressure (SBP)
[20], diastolic blood pressure (DBP) [20], body mass
index (BMI) [21], waist-hip ratio adjusted for BMI
(WHRadjBMI) [22], body fat percentage (BFP) [23], total
cholesterol (TC) [24], low-density lipoproteins (LDL)
[24], high-density lipoproteins (HDL) [24], and triglycer-
ides (TG) [24] (Table 1 and Additional file 1 - Supple-
mentary Table 1; Availability of data and materials). For
each of these studies, approval by an institutional review
committee was obtained, and all subjects gave informed
consent, as documented in each original publication. All
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bivariate GWAS were performed using the bivariate_
scan software [16]. Each bivariate GWAS resulted in a
set of independent loci, which we defined as the gen-
omic region that includes all SNPs within 1MB of the
bivariate lead SNP and any other SNPs that are in LD of
r2 > 0.2 with the lead SNP using the 1000 Genomes
European ancestry cohort (1 kG EUR) [25]. Further de-
tail on our bivariate GWAS pipeline can be found in the
Additional file 1 - Supplemental Methods [16].

AD-centric analysis
We performed an AD-centric analysis to identify loci
that are known to be associated with AD, but not previ-
ously known to be pleiotropic for cardiometabolic traits.
We first performed pairwise bivariate GWAS between
AD and each cardiometabolic trait (Additional file 1 -
Supplementary Table 2). To reduce the list of bivariate
GWAS genome-wide significant loci results to just the
loci that are near genome-wide significantly associated
with AD and potentially associated with a cardiometa-
bolic trait, we applied a filter that required loci to have
an AD P value < 1 × 10− 6 and a cardiometabolic trait P
value < 5 × 10− 3 (Fig. 1).

Locus discovery analysis
To performed a locus discovery analysis, we performed a
bivariate GWAS between AD and each cardiometabolic
trait (Additional file 1 - Supplementary Table 3). To
identify loci that were both pleiotropic and novel, we re-
quired the bivariate GWAS lead SNP had r2 < 0.2 in 1
kG EUR and was greater than 500 kb away from all
known single-trait associated loci for AD or the cardio-
metabolic trait being tested, as well as any loci from pre-
vious pleiotropic GWAS between the two traits [4, 26].
Additionally, each locus needed to have at least a

nominal single-trait association with both traits, so we
required an AD P value < 5 × 10− 3 and a cardiometabolic
trait P value < 5 × 10− 3 (Fig. 1).

Trait-trait colocalization
We performed colocalization analysis between the AD
and the cardiometabolic trait signals given a 500 kb win-
dow (± 250 kb) around each locus using COLOC [13].
Our threshold for this analysis was a conditional prob-
ability of colocalization (i.e., PP4/ (PP3 + PP4)) ≥ 0.8,
which is defined as the posterior probability of colocali-
zation conditioned on the presence of a signal for each
trait (Fig. 1). Loci that had a conditional probability of
colocalization > 0.45 and < 0.8 were visually inspected
using LocusZoom plots, and if the LD structure sug-
gested additional associations unlinked to the leading
variant in the region, we performed approximate condi-
tional analysis (see “Approximate conditional analysis,”
below) [27]. We excluded loci in the HLA region and
near the APOE locus from these experiments due to the
difficulty in interpreting the independent contribution of
these loci to these traits.

Single-tissue-eQTL colocalization
We performed single-tissue eQTL colocalization analysis
to prioritize candidate causal genes implicated by the
pleiotropic signals detected in our bivariate GWAS. We
collected the list of genes and tissues for which each bi-
variate GWAS lead SNP was a significant single-tissue
eQTL in GTEx v7 from the GTExPortal (Additional file 1
- Supplementary Tables 4–7,9; Additional file 2 -Supple-
mentary Table 8) (data from GTEx as of 02-28-2018, v7)
[28]. We then performed colocalization using the AD as-
sociation data at each locus and each single-tissue eQTL
signal from GTEx v7 using a 500-kb window (± 250 kb)

Table 1 Single-trait GWAS summary statistics used for bivariate GWAS

Trait Publication PMID Sample size

AD Jansen et al. [17] 30617256 71,880 cases, 383,378 controls

BFP Lu et al. [23] 26833246 100,716

BMI Yengo et al. [21] 30124842 681,275

CHD Van der Harst et al. [18] 29212778 34,541 cases, 261,984 controls

DBP Evangelou et al. [20] 30224653 1,006,863

HDL Klarin et al. [24] (EUR samples only) 30275531 404,128

LDL Klarin et al. [24] (EUR samples only) 30275531 404,128

SBP Evangelou et al. [20] 30224653 1,006,863

TC Klarin et al. [24] (EUR samples only) 30275531 404,128

TG Klarin et al. [24] (EUR samples only) 30275531 404,128

T2D Mahajan et al. [19] 30297969 80,831 cases, 817,299 controls

WHRadjBMI Pulit et al. [22] 30239722 694,649

A list of the traits, original GWAS publication, and sample sizes for each trait used in our analyses
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around the lead SNP using COLOC [13] (Fig. 1). As
above, we considered the AD and eQTL signals to
colocalize if the conditional probability of colocalization
was ≥ 0.8. We visually inspected the loci where the colo-
calization analysis resulted in a standard probability of
colocalization < 0.8, but conditional probability of
colocalization met our criteria [27]. For these loci, we
performed approximate conditional analysis, when the
LD structure suggested there could be allelic series (see
“Approximate conditional analysis,” below).

Approximate conditional analysis
At each locus, we performed approximate conditional
analysis on SNPs that appeared to be associated with
the trait of interest independently of the lead SNP,
because the presence of multiple associated variants
in a region violates the assumptions of COLOC and
can lead to false positives or false negatives [13]. We
identified potential nearby association signals using
LocusZoom plots and the LDassoc tool of LDlink [27,
28]. For each locus, we performed approximate condi-
tional analysis using GCTA-COJO with 1000 Genome
Project data (European samples, n = 503) as a refer-
ence panel [29, 30]. We conditioned our lead SNP on
the most associated SNP for each potential confound-
ing signals we identified at the locus. We then re-
peated the colocalization experiment on the locus
using the conditional SNP P values. We provide a full
list of traits and loci we performed conditional ana-
lysis on, the lead SNP for each analysis, and the SNPs

we conditioned on for each analysis are in the supple-
ment (Additional file 1 - Supplementary Table 10).

Results
AD-centric analysis results
We performed an AD-centric analysis to detect known
AD loci that were not previously known to be pleio-
tropic with eleven cardiometabolic traits (“Methods”).
We identified a total of 39 independent loci that were bi-
variate genome-wide significant, met our AD-centric
single-trait P value threshold of P value < 1 × 10− 6 and a
cardiometabolic trait P value < 5 × 10− 3, and were out-
side of the HLA and APOE regions (Additional file 1
Supplementary Table 2).
We next performed trait-trait colocalization analysis

on all 39 bivariate genome-wide significant loci to iden-
tify the subset of loci with evidence of a causal SNP
shared in common between the AD signal and the car-
diometabolic trait signal. Three loci met our colocaliza-
tion criteria (Table 2). All of these loci are novel
pleiotropic loci between AD and the respective cardio-
metabolic traits, but have previously been identified as
genome-wide significant for AD in recent single-trait
AD GWAS [4, 17, 31].
To identify candidate causal genes at these three loci,

we performed single-tissue-eQTL colocalization analysis
between the AD signal at each locus using eQTLs identi-
fied by GTEx (“Methods”). All three pleiotropic signals
colocalized with one or more single-tissue eQTL signals

Fig. 1 Bivariate GWAS analysis workflow. Starting with all the SNPs that were in both GWAS summary statistics files, we performed a bivariate
GWAS and filtered the bivariate significant loci based on their single-trait P values. For the locus discovery experiment, we removed loci that were
in LD (1 kG EUR r2 > 0.2) or within 500 kb of a known AD or the cardiometabolic trait being tested according to the GWAS Catalog (dotted line
arrows). The filtration steps were followed by trait-trait colocalization to confirm there was evidence of a shared causal SNP between the signals
at each locus. Finally, we performed single-tissue-eQTL analysis to identify candidate causal genes for each locus
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(Additional file 1 -Supplementary Table 11), and we de-
scribe these loci in more detail below.
We detected a pleiotropic signal between AD and DBP

at the ADAM10 locus, discovered as an AD association
in Jansen et al. [17] (Additional file 1 - Fig. S1). Previous
single-trait GWAS have identified several other cardio-
metabolic trait associations, including BMI and CHD,
near this locus (within a 1-Mb window around the lead
SNP), but our colocalization results suggest that these
signals are independent of the AD signal at this locus
[26]. Single-tissue eQTL colocalization analysis identified
a single eQTL for MINDY2 in tibial nerve tissue that
met our colocalization threshold (Additional file 1 - Fig.
S1 and Supplementary Table 11).
The second pleiotropic signal we detected was at the

ADAMTS4 locus between WHRadjBMI and AD, also
discovered in Jansen et al. [17] AD GWAS (Add-
itional file 1 - Fig. S2). Single-tissue-eQTL colocalization
analysis demonstrated that eQTLs for the gene NDUFS2
across multiple tissues strongly colocalized with this sig-
nal (Additional file 1 - Supplementary Table 11). An
eQTL for the gene FCER1G in tibial nerve also met our
colocalization threshold (Additional file 1 - Supplemen-
tary Table 11).
Finally, we detected pleiotropic signals at the ACE

locus, which is a known blood pressure and AD associ-
ation, between both DBP and AD and SBP and AD
(Fig. 2a and Tables 2, [20, 31–35]). We noted a direction
of effect opposite to the epidemiological correlation for
both of these signals, meaning the allele that was associ-
ated with reduced risk of AD was associated with
increased blood pressure. Our single-tissue eQTL colo-
calization showed that both pleiotropic signals had
strong evidence of colocalization with eQTLs for ACE
(Additional file 1 - Supplementary Table 11), but also
were opposite directions of effect among different tissues
(Additional file 1 - Supplementary Table 11, [36]).
The observed complexity of opposite direction effects

at this locus motivated us to further investigate the po-
tential of multiple variants associating with traits and/or
eQTLs in the region to confound our colocalization ana-
lyses. Here, we performed approximate conditional ana-
lyses on the pleiotropic signal lead SNP, rs4308, and the
lung ACE eQTL lead SNP, rs4324, in the single-tissue
ACE eQTL data for kidney cortex (GTEx v8), lung
(GTEx v7), and cerebellum (GTEx v7) (Table 3). The re-
sults of this analysis suggested that the ACE eQTL in
lung was independent of the ACE eQTLs in the other
tissues. These results also support that the ACE eQTLs
in kidney and cerebellum share the same causal SNP,
which has opposite directions of effect in these tissues
(Table 3). Previous studies at this locus observed this
same relationship between ACE expression in brain tis-
sue and ACE expression in plasma [33].

We next assessed which ACE eQTLs were most likely
to be involved with each of the single-trait signals at this
locus, which included the AD, DBP, and SBP signals that
we report as pleiotropic as well as a T2D signal that oc-
curred in this region (Additional file 1 - Fig. S3). We
performed colocalization analysis of each of the trait sig-
nals with the single-tissue ACE eQTLs in kidney cortex,
lung, and cerebellum (Table 4). The T2D signal coloca-
lized with the lung ACE eQTL, but not with the kidney
and cerebellum ACE eQTLs. The DBP and SBP signals
colocalized with the cerebellum and kidney ACE eQTLs,
but not the lung ACE eQTL. The AD signal colocalized
with all three ACE eQTLs, but the evidence for colocali-
zation was stronger for the cerebellum and kidney ACE
eQTLs (Table 4). These results suggest that the blood
pressure and AD pleiotropic signals share the same
causal SNP that is in high LD with rs4308 and that these
associations could be mediated by changes in ACE ex-
pression in kidney and brain tissue. However, the T2D
signal at this locus appears to be independent of the
rs4308 signal and could be mediated by changes in ACE
expression in lung tissue.

Locus discovery analysis results
We moved to a broad-scale locus discovery effort using
bivariate GWAS to detect novel pleiotropic loci that
were not previously associated with AD or the eleven
cardiometabolic traits of interest (“Methods”). After ap-
plying a battery of filters to identify the subset of loci
with positive evidence of pleiotropy and novelty, we
were left with thirteen independent loci (Additional file 1
- Supplementary Table 3).
We next performed trait-trait colocalization analysis

and found that three of the thirteen independent loci
colocalized (Table 5). Thus, there was strong evidence of
a shared causal SNP between AD and cardiometabolic
traits at these loci. Among the thirteen independent loci
was a locus with low-frequency exonic lead SNP with a
bivariate P value of 7 × 10− 8. Due to the lead SNP being
a low-frequency SNP, it had very little LD with other
SNPs, which was not conducive to colocalization ana-
lyses (Table 5).
To identify candidate causal genes, we performed

single-tissue-eQTL colocalization analysis at the three
loci that were conducive to colocalization analysis. We
found that all three loci colocalized with one or more
single-tissue eQTL signals from GTEx v7 (Add-
itional file 3 - Supplementary Table 12).
The first novel pleiotropic signal we detected was be-

tween LDL and AD at the DOC2A locus (Additional file 1
- Fig. S4). This region has been implicated in other car-
diometabolic and neurological traits in previous single-
trait GWAS [26]. The lead SNP, rs11642612, is in LD (1
kG EUR r2=0.753) with SNPs that are associated with
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BMI and schizophrenia [26]. Single-tissue eQTL coloca-
lization found that this pleiotropic signal colocalized
with several eQTL signals, but it most strongly coloca-
lized with an eQTL for DOC2A in pancreatic tissue
(Additional file 3 - Supplementary Table 12).

The next pleiotropic signal was between AD and HDL
at the SPPL2A locus with the lead SNP rs12595082 (Fig.
S5). This locus was reported as near genome-wide sig-
nificantly associated with late-onset AD in Kunkle et al.
[31]; however, our bivariate result is the first analysis to

Table 3 Approximate conditional analysis on tissue-specific allelic series in ACE eQTLs

Tissue of ACE
eQTL

P value of rs4308
conditioned on rs4324

Effect of rs4308 on the ACE eQTL
conditioned on rs4324

P value of rs4324
conditioned on rs4308

Effect of rs4324 on the ACE eQTL
conditioned on rs4308

Lung 0.15 0.048 2.57e−08 0.18

Cerebellum 5.34e−04 − 0.25 0.66 − 0.034

Kidney cortex 4.41e−08 0.49 0.21 − 0.14

Approximate conditional analyses performed on the leading single-tissue eQTLs at the ACE locus

Fig. 2 ACE locus. a Pleiotropic signal between DBP, SBP, and AD at the ACE locus, and the eQTL signal for ACE in kidney cortex and cerebellum. b
Flowchart of our hypothesized mechanism as to how tissue-specific expression of ACE could mediate the blood pressure (BP) and AD pleiotropic
signal at this locus. c Diagram of a hypothesized mechanism by which increased kidney expression of ACE could alter renin expression and thus
lead to reduce BP through the feedback loops of the renin-angiotensin system
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detect it at genome-wide significance. This locus was
also detected in our AD and DBP bivariate GWAS with
the lead SNP rs12440570. Colocalization analysis sug-
gests that the AD, HDL, and DBP association peaks all
colocalize with each other (conditional probability of
colocalization = 0.81) (Additional file 1 - Supplemental
Methods: MOLOC for the SPPL2A locus) [37]. The
single-tissue eQTL analysis showed that this signal colo-
calized with eQTLs for multiple nearby genes (Add-
itional file 3 - Supplementary Table 12).
We detected an opposite direction of effect pleiotropic

signal between AD and BFP at the CCNT2 locus (Add-
itional file 1 – Figure S6). Several other neurological and
cardiometabolic traits have been associated with this
locus [26]. The lead SNP, rs10496731, is in LD with
SNPs that are associated with Parkinson’s disease (1 kG
EUR r2> 0.378), and DBP (1 kG EUR r2> 0.978) from
single-trait GWAS [26]. Single-tissue-eQTL colocaliza-
tion analysis indicated this signal colocalized with eQTLs
for CCNT2 in skin and AC016725.4 in testis (Additional
file 3 - Supplementary Table 12).
The pleiotropic signal we detected at the DOCK4

locus was between AD and DBP, with rs144867634 as
the lead SNP (Fig. 3). rs144867634 is a low-frequency
missense variant that is two bases away from the 3′
splice junction of the eleventh exon of DOCK4
(Fig. 3a). This led us to evaluate whether rs144867634
alters the splicing of DOCK4. According to our in
silico evaluation of rs144867634’s effect on splicing, it
is likely that it alters the splicing of DOCK4, leading
to exon 11 being spliced out of the DOCK4 transcript
(Fig. 3) (Additional file 1 - Supplemental Methods
and Supplementary Tables 13–15).

Discussion
Here, we demonstrate that a bivariate GWAS method
coupled with colocalization analysis enabled the detec-
tion of pleiotropic loci between these complex traits and
identification of plausible causal genes and potential
therapeutic targets. We detected three AD-associated
loci with previously unknown pleiotropy for cardiometa-
bolic traits and four loci that were pleiotropic and novel
for both AD and the pertinent cardiometabolic trait, all
of which we were able to map to one or more candidate

causal genes. While our manuscript was under consider-
ation, we note that a report was posted which indicated
the DOC2A locus is a genome-wide significant AD locus
supporting our results [38].
Our findings support those of previous pleiotropy

studies between these traits: that there is a complex gen-
etic relationship between AD and cardiometabolic traits
involving both vertical and horizontal pleiotropy [4].
Many of the loci suggest a mechanism where AD and
cardiometabolic traits have different causal tissues for
the two traits. Further evaluation of the loci we reported
could aid in predicting the side effects of medications
and for drug repurposing for AD and cardiometabolic
diseases.
The candidate causal genes we identified through

single-tissue-eQTL colocalization analysis support the
roles of blood pressure and immune response in both
AD and cardiometabolic traits. Three of the pleiotropic
loci we report implicate blood pressure mechanisms in-
volved in the pleiotropic relationship at the locus, and
four loci had candidate causal genes that have been
shown to be involved in immune responses. While these
mechanisms make sense given that hypertension and in-
flammation have both been linked with AD and cardio-
metabolic diseases, they have not been prevalent in the
discussion of pleiotropy between these traits [4, 34, 39–
42]. We did not perform experiments to identify causal
variants at these loci in this study. However, for some of
these loci, previous work has identified plausible causal
variants tagged by the pleiotropic signal (e.g., the ALU
insertion/deletion at the ACE locus) [32].
The pleiotropic signal at the ACE locus allowed us to

shed more light on a locus that is potentially clinically
relevant, but complex. ACE is an important enzyme in
the renin-angiotensin system, and it is the target gene of
ACE inhibitors, a common hypertension medication.
This locus has also been well studied from an AD per-
spective [32, 33, 35]. We found that the allele associated
with increased risk of AD and decreased DBP and SBP
was associated with decreased ACE expression in brain
tissues and most other tissues, but increased ACE ex-
pression in transverse colon and kidney (Fig. 2b and
Additional file 1 - Supplemental Table 11). These oppos-
ite direction of effect single-tissue ACE eQTLs appear to

Table 4 Tissue-specific ACE eQTL colocalization with GWAS trait signals at the ACE locus

Tissue of
ACE eQTL

Conditional probability of
colocalization with AD

Conditional probability of
colocalization with T2D

Conditional probability of
colocalization with DBP

Conditional probability of
colocalization with SBP

Lung 0.89 0.96 2.73e−04 2.72e−04

Cerebellum 0.95 0.58 0.98 0.97

Kidney
cortex

0.97 0.22 0.99 0.99

Conditional Posterior Probability of Colocalization, PP4/ (PP3 + PP4) the results of the colocalization analysis between each trait and ACE eQTL
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colocalize with one another and be independent of a
lung ACE eQTL nearby (Table 3 and Table 4). However,
we cannot exclude the possibility of two causal variants
that are both in LD (1 kG EUR r2 > 0.8) with the lead
SNP of the pleiotropic signal, rs4308.
The decrease in blood pressure could be due to the in-

crease in ACE expression in the kidney and the negative
feedback loop between angiotensin II and renin (Fig. 2b,
c) [43]. Our hypothesis is that increased expression of
ACE in the kidney leads to increased levels of angioten-
sin II in the kidney. These locally increased levels of
angiotensin II lead to reduced expression of renin, slow-
ing the entire renin-angiotensin system, and decreasing
blood pressure (Fig. 2c).
In recent years, the relationship between ACE inhibitors

and AD has been an active field of study and has resulted
in two leading hypotheses of how ACE inhibitors may
alter AD risk [34, 39]. Several studies have found that pa-
tients on ACE inhibitors that cross the blood-brain barrier

(centrally acting) are at reduced risk of dementia and have
improved cognitive ability. Other studies have found evi-
dence that patients taking ACE inhibitors have decreased
cognitive function and increased levels of β-amyloid (Aβ)
protein in their central nervous system; these results were
also replicated in mice [40]. This is thought to be due to
ACE’s ability to cleave Aβ42 to Aβ40, which is a form of
Aβ that is less pathogenic than Aβ42 due to it being less
prone to aggregate in the brain [40]. Increases in Aβ42 to
Aβ40 ratios have been associated with the PSEN1 and
PSEN2 mutations in the familial form of AD [44]. Our re-
sults support this second hypothesis, that reduced ACE
activity in the brain leads to more Aβ42, which in turn
could lead to more Aβ plaques and an increase in AD risk
(Fig. 2b). Our findings suggest that further work should be
done to evaluate the role of ACE therapeutics for risk of
AD.
The BFP and AD pleiotropic signal at the CCNT2

locus has a particularly compelling potential mechanism.

Fig. 3 DOCK4 locus. Evidence that supports rs144867634 being the causal variant for the pleiotropic signal at the DOCK4 locus. a In silico
evidence that rs144867634 alters DOCK4 splicing. The variant is at the splice junction and is predicted to alter splicing by Human Splice Finder 3
(HSP3) and ASVIPA. b Single-cell mouse kidney data show that Dock4 is expressed by proximal convoluted tubule cells (PT) (128 PT cells of 26,482
assayed have clear evidence of expressing Dock4) and distal convoluted tubule cells (DCT) (27 DCT cells of 8544 assayed have clear evidence of
expressing Dock4) (Park et al. 2018). c Mouse brain single-cell data show that Dock4 expression is reduced in microglia when mice have a
neuroinflammatory response induced by endotoxin lipopolysaccharide (LPS) injections (Srinvasan et al. 2016)
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Single-tissue-eQTL colocalization analysis detected colo-
calization between the bivariate signal and an eQTL for
CCNT2 in skin tissue (Table 5 and Additional file 1 –
Figure S6). The gene CCNT2 is a strong candidate for
being involved with both the BFP and the AD associ-
ation. CCNT2 has been shown to be important in adi-
pose biology [45]. Human CCNT2 knockout adipocytes
have altered adipogenesis gene expression and decreased
secretion of the hunger inhibiting hormone leptin, which
is consistent with increased BFP [45]. CCNT2 has also
been shown to be used by herpes simplex virus 1 (HSV-
1) when it transcribes its genome [46]. This is a plausible
link to AD due to the hypothesis that HSV-1 can trigger
amyloid plaques [47, 48].
Finally, our results suggest that DOCK4 is the putative

causal gene for the pleiotropic signal between DBP and
AD at the DOCK4 locus, since the lead SNP is a low-
frequency exonic variant in DOCK4 that is predicted to
lead to exon 11 of DOCK4 being spliced out of the
DOCK4 transcript (Fig. 3a). For these reasons, and the
fact that the rare allele is associated with lower risk of
AD and reduced DBP, DOCK4 is our strongest candi-
date for a novel therapeutic target. The human genetics
data observed here is consistent with the simple hypoth-
esis that reduced efficacy of DOCK4 in vivo could treat
both hypertension and AD. There is already evidence
that DOCK4 could be involved with AD and DBP.
Previous genetic studies have shown that DOCK4 var-
iants are associated with multiple neurological pheno-
types, and DOCK2, the other member of DOCK4’s
protein subfamily, expression is increased in the
microglia of patient’s with AD [49, 50]. It has also
been shown that Dock4 expression in mouse microglia
is altered when mice are given an endotoxin
lipopolysaccharide (LPS) injection to induce a neu-
roinflammatory response (Fig. 3c) [51]. DOCK4 could
also affect DBP through changes in kidney function.
DOCK4 is expressed in kidney in GTEx v8, and
Dock4 is expressed in mouse kidney proximal tubule
cells and distal convoluted tubule cells. These cells
are responsible for reabsorption of salts, sugars, and
amino acids in the nephron of the kidney, and thus
altering their function could change blood volume
(Fig. 3b) [52, 53].

Limitations
There are several limitations of our study. The Jansen
et al. [17] AD GWAS and many of the cardiometabolic
trait GWAS we used included individuals from the UK
Biobank dataset. This sample overlap will increase the
estimated covariance between our traits making the
resulting bivariate P value more conservative for a locus
that has the same direction of effect as the phenotypic
correlation and less conservative when a locus has an

opposite direction of effect. The overlapping samples
may also inflate our posterior probability of colocaliza-
tion between these traits. A phenotypic limitation of our
study is that it is difficult to differentiate between AD,
vascular dementia, and mixed dementia [54]. It is pos-
sible that some of the pleiotropic loci we detected are
due to vascular or mixed dementia patients being in-
cluded in this AD cohorts, particular since Jansen et al.
include some Proxy-AD patients [17] .

Conclusion
We have shown that bivariate GWAS paired with colo-
calization analysis can be an effective way to detect
pleiotropic loci between complex traits and generate hy-
potheses as to why these loci are pleiotropic. We de-
tected seven loci that have evidence of being pleiotropic
between AD and a cardiometabolic trait, and we were
able to identify candidate causal genes for all of these
loci. Two loci seem to stand out in their potential to im-
prove our ability to prevent and treat AD. The first is
the ACE locus, which provides more evidence to support
a potential link between AD risk and ACE inhibitors.
The other is the DOCK4 locus which is our most
promising candidate for a novel therapeutic target.
Our results may aid in resolving the etiology of AD
and help identify new therapeutic targets for this dis-
ease. AD is a complex disease, and we expect that ap-
plying this method to other traits that have been
associated with AD, such as educational attainment
and immune traits, should also lead to novel pleio-
tropic loci, new candidate causal genes, and a better
understanding of AD [42, 55, 56].
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