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Abstract

Background: The sortilin-related receptor 1 (SORL1) gene, regulating the trafficking and recycling of amyloid
precursor protein, has been related to Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The aim of
the present study was to investigate the relationship between SORL1 polymorphisms, plasma concentrations of
amyloid-beta (Aβ) isoforms, and AD and MCI susceptibility for a Han Chinese population in Taiwan.

Methods: Eight single-nucleotide polymorphisms (SNPs) in SORL1 and the apolipoprotein E gene (APOE) ε4 alleles
were genotyped in 798 patients with AD, 157 patients with MCI, and 401 control subjects. Plasma concentrations of
Aβ42, Aβ40, and neuropsychiatric tests for six different cognitive domains were examined.

Results: Among the eight tested SNPs, SORL1 rs1784933 was most significantly associated with AD and MCI in our
population. The G allele of rs1784933 exerted a protective effect and was associated with a reduced risk of AD
(odds ratio [OR] = 0.75, p = 0.004) and MCI (OR = 0.69, p = 0.013). The significance remained after we adjusted
for age, sex, and APOE ε4 alleles. For the overall participants, the plasma concentrations of Aβ42 were
nominally significant for subjects carrying the rs1784933 G allele having a lower level than those without the
G allele (p = 0.046). There was a similar trend for the G allele carriers to have a lower plasma Aβ40 level than
noncarriers, but this was not significant. The nonsynonymous SNP rs2298813 was also related to a lower disease risk
when AD and MCI were combined as a group (OR = 0.76, p = 0.035). However, there was no association between
SORL1 genotypes and any of the six cognitive tests.

Conclusions: Findings from our study provide support for the effect of SORL1 gene on the disease risks and
pathognomonic surrogates of AD/MCI. The interaction between SORL1 polymorphisms and Aβ formation requires
further study.
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Background
Alzheimer’s disease (AD) is a complex neurodegenera-
tive disease caused by a combination of genetic and
environmental influences. The heritability of AD was es-
timated to be 58–79% in a twins study [1]; yet, long lists
of contributory genes have not been fully elucidated.
Mutations in the amyloid precursor protein (APP),

presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes are
responsible for autosomal dominant inheritance of AD [2].
Genome-wide association studies (GWAS) identified more
than 20 susceptible genes for late-onset Alzheimer’s disease
(LOAD), including BIN1, CR1, CLU, CD33, PICALM, and
ABCA7 [3–5]. Among them, the apolipoprotein E gene
(APOE) remains the major genetic risk factor of LOAD by
posing a 2.6- to 3.2-fold risk in individuals with one copy
of the APOE ε4 allele and a 14.9-fold risk in those with two
copies of the ε4 allele [6, 7].
Accumulation of amyloid-beta (Aβ) peptide, the

neurotoxic proteolytic derivative of APP, is central to the
pathogenesis of AD. The causative genes of familiar AD
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(APP, PSEN1, and PSEN2) and the strongest genetic
contributor to LOAD (APOE) are all involved in the pro-
duction, transport, and clearance of Aβ [2, 8]. The pro-
tein encoded by sortilin-related receptor 1 gene (SORL1)
determines the intracellular fate of APP to be recycled
or drifted to the endosome-lysosome pathway to gener-
ate Aβ [9, 10]. Aberrant expression of SORL1 has been
implicated in AD pathogenesis because the SORL1 pro-
tein was found to be downregulated in the brain tissue
of patients with sporadic AD [11]. Rogaeva et al. first il-
lustrated that single-nucleotide polymorphisms (SNPs)
located within two clusters of the SORL1 genome (SNPs
8–10 and SNPs 23–25) were related to LOAD suscepti-
bility [12]. This association was later replicated in several
ethnic groups, including white, Japanese, Korean, and
Chinese populations [13–16]. Previous studies showed
that SORL1 polymorphisms were related to decreased
cerebrospinal fluid (CSF) concentrations of Aβ42 and
Aβ40, as well as reduced CSF levels of SORL1 protein
[17–19]. However, the relationship between SORL1 poly-
morphisms and plasma biomarkers of Aβ has never been
investigated. Recent studies demonstrated that SORL1
polymorphisms predict atrophy of AD-specific brain
structure (i.e., hippocampal and parahippocampal gyri) in
nondemented elderly persons [20], supporting involve-
ment of SORL1 in the neurodegeneration of cognition-
related regions. Investigating the influence of SORL1
polymorphisms on these clinical and biological endophe-
notypes could strengthen their pathogenic role in AD.
The aim of the present study was to elucidate whether

SORL1 polymorphisms confer a risk of LOAD and mild
cognitive impairment (MCI) in the Han Chinese popula-
tion in Taiwan, as well as deciphering its effects on dif-
ferent cognitive domains. The influence of SORL1
polymorphisms on different Aβ isoforms in blood was
also examined to give biological evidence for SORL1’s
effects.

Methods
Subjects
A total of 798 patients with LOAD, 157 patients with
MCI, and 401 unrelated healthy control subjects were
enrolled from Taipei Veterans General Hospital and
Taichung Veterans General Hospital, Taiwan. All partici-
pants were of Han Chinese descent and resided in
Taiwan. The diagnosis of probable AD was made accord-
ing to the criteria of the National Institute of Neuro-
logical and Communicative Disorders and Stroke/
Alzheimer’s Disease and Related Disorders Association
[21], and the diagnosis of MCI was made according to
the revised 2004 consensus criteria [22]. All participants
received a comprehensive assessment, including history
query, neurological examinations, laboratory tests, and
neuroimaging as diagnostic surveys. The control subjects

were volunteers without complaints of cognitive dys-
function recruited from outpatient clinics. The study
was approved by the institutional review boards of each
hospital. All participants provided informed consent ac-
cording to our institutional guidelines and the recom-
mendations of the Declaration of Helsinki.

Cognitive testing
For each participant, the global cognitive performance
was assessed using the Mini Mental State Examination
(MMSE) [23]. Tests specific to each cognitive domain
were performed in patients with AD and patients with
MCI, including (1) attention (forward and backward
digit span from the Wechsler Memory Scale-IV) [24],
(2) memory (12-item word recall test) [25], (3) language
and executive function (verbal fluency category test)
[26], (4) processing speed (Trail Making Test A) [27],
and (5) naming task (Boston Naming Test) [28].

Genotyping
Genomic DNA was extracted from whole blood using
the Gentra Puregene kit according to the manufacturer’s
protocols (QIAGEN, Hilden, Germany). The ε2, ε3, and
ε4 alleles of APOE were determined by two SNPs
(rs429358 and rs7412) [29]. Eight SORL1 SNPs were se-
lected on the basis of (1) rs2070045, rs1699102,
rs3824968, rs2282649, and rs1010159 (aka SNP19, 22,
23, 24, and 25 in the original report by Rogaeva et al.
[12]) being the top signals related to LOAD in white
populations [12, 14]; (2) rs3737529 and rs1784933 being
the most significant SNPs in Asian populations [15, 16];
and (3) the nonsynonymous SNP rs2298813 having been
demonstrated to increase Aβ production in cellular
models [30]. All genotyping reactions were carried out
using the TaqMan genotyping assay (Applied Biosys-
tems, Foster City, CA, USA). Polymerase chain reactions
were performed using 96-well microplates with an ABI
7500 real-time polymerase chain reaction system (Ap-
plied Biosystems). Allele discrimination was achieved by
detecting fluorescence using SDS software version 1.2.3
(Applied Biosystems).

Measurement of plasma Aβ concentrations
Plasma samples were available for 592 patients with
LOAD, 119 patients with MCI, and 170 control subjects.
Within 30 minutes of collection, plasma samples in
ethylenediaminetetraacetic acid-containing tubes were
centrifuged at 3000 rpm at 4 °C, and the supernatants
were collected, divided into aliquots, and frozen at −80 °C.
Plasma concentrations of Aβ40 and Aβ42 were measured
using the INNO-BIA plasma Aβ forms immunoassay
(Fujirebio, Gent, Belgium) as described previously [31]. In
brief, the different Aβ isoforms were captured by a mix of
beads selectively coated with three different monoclonal
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antibodies with affinity for Aβ42, Aβ40, and non-Aβ pep-
tides. The immunoreactivity of Aβ42 and Aβ40 were
quantified using the xMAP Technology on the Luminex
analytical platform (Luminex, Austin, TX, USA).

Statistical analysis
Hardy-Weinberg equilibrium tests were conducted for
each SNP. An additive model of inheritance was pre-
sumed to test the associations among SORL1 SNPs,
LOAD, and MCI. A χ2 test was used to compare the
genotype distributions between LOAD and control sub-
jects, as well as between MCI and control subjects.
Multivariate logistic regression without and with adjust-
ment for age, sex, and APOE ε4 allele was further used
to estimate the odds ratios (ORs) for the risk alleles.
To explore the influence of SOLR1 SNPs on AD endo-

phenotypes, MMSE scores and serum Aβ concentrations
were compared across different SORL1 genotypes using
one-way analysis of variance (ANOVA). For patients
with LOAD and patients with MCI, the influence of
SORL1 genotypes on different cognitive domains was
also evaluated using ANOVA. All statistical analyses
were performed with PASW Statistics software (version
18.0; SPSS, Chicago, IL, USA) with a p value <0.05 set as
statistically significant. Linkage disequilibrium (LD)
blocks were generated by using Haploview version 5.0
software (Broad Institute, Cambridge, MA, USA) using
the “solid spine of LD” method, in which a block was
formed if the first and last markers were in strong LD
with all intermediate markers. The frequency of each
haplotype and comparison of the haplotype distributions

between AD plus MCI in combination and the control
group were performed using Haploview software version
5.0 [32]. To illustrate the LD conformation and haplo-
type frequency in white populations, the genotype data
of the eight SORL1 SNPs from a CEU population (i.e.,
Utah residents with Northern and Western European
ancestry) were obtained from the 1000 Genomes Project
Browser (http://browser.1000genomes.org/index.html).

Results
Associations of SORL1 SNPs and AD/MCI risk
The demographic data of study participants are shown
in Table 1. Eight SORL1 SNPs were genotyped, namely
rs2298813 (SNP13), rs2070045 (SNP19), rs1699102
(SNP22), rs3824968 (SNP23), rs3737529, rs2282649
(SNP24), rs1010159 (SNP25), and rs1784933 (SNP26)
(Table 2). The genotype distributions of all SNPs com-
plied with Hardy-Weinberg equilibrium.
SORL1 rs1784933 was most significantly associated

with LOAD and MCI in our population (Table 2). The
minor allele G of rs1784933 appeared to exert a protect-
ive effect, with significantly lower frequencies of GG
genotype in patients with LOAD (7.9%) and in patients
with MCI (6.4%) in comparison with control subjects
(11.8%) (Table 2). In regression analysis, the G allele was
associated with a reduced risk of MCI and LOAD. After
adjustment for age, sex, and APOE ε4 allele, the G allele
remained a significant predictor of MCI (OR = 0.69, p =
0.013) and LOAD (OR = 0.75, p = 0.004). Combing pa-
tients with AD and patients with MCI revealed a stronger

Table 1 Demographic data

Control subjects (n = 401) MCI (n = 157) AD (n = 798)

Age, years 75.4 ± 9.8 74.2 ± 8.3 79.1 ± 8.2**

Male sex 257 (64.1%) 82 (52.2%)* 411 (51.5%)**

Education level, years 11.1 ± 4.9 10.2 ± 4.7 9.7 ± 4.7**

MMSE score 28.0 ± 2.1 26.0 ± 2.8** 18.3 ± 5.9**

12-item word recall test – 4.5 ± 2.9 1.4 ± 2.2†

Forward digit span – 10.0 ± 2.5 8.4 ± 3.0†

Backward digit span – 5.7 ± 2.4 3.9 ± 2.1†

Verbal fluency test – 10.2 ± 3.0 6.5 ± 3.2†

Boston Naming Test – 13.6 ± 1.3 11.4 ± 3.0†

Trail Making Test A, seconds – 92.3 ± 56.9 181.8 ± 145.2†

APOE genotypes

ε2ε2/ε2ε3/ε3ε3 339 (85.0%) 123 (79.4%)* 504 (63.3%)**

ε2ε4/ε3ε4 59 (14.8%) 28 (18.1%) 269 (33.8%)

ε4ε4 1 (0.3%) 4 (2.6%) 23 (2.9%)

Abbreviations: MCI Mild cognitive impairment, AD Alzheimer’s disease, MMSE Mini Mental State Examination, APOE apolipoprotein E gene
Data are presented as count (percent) or mean (SD)
** p < 0.01 by χ2 test or Student’s t test when AD or MCI group was compared with control subjects
* p < 0.05 by χ2 test or Student’s t test when AD or MCI group was compared with control subjects
† p < 0.01 by Student’s t test when comparing patients with AD with patients with MCI
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Table 2 Genotype distribution of SORL1 single-nucleotide polymorphisms among patients with Alzheimer’s disease, patients with mild cognitive impairment, and control subjects

MM/Mm/mm, n (%) Multivariate regression analysis

SNP Allele (M/m) Control subjects MCI AD MCI vs. control subjects AD vs. control subjects AD +MCI vs. control
subjects

rs2298813 (SNP13) G/A 291/90/9 (74.6/23.1/2.3) 134/18/2 (87.0/11.7/1.3) 597/176/12 (76.1/22.4/1.5) OR = 0.49, p = 0.003 OR = 0.91, p = 0.455 OR = 0.84, p = 0.154

Adj OR = 0.49, p = 0.003 Adj OR = 0.82, p = 0.156 Adj OR = 0.76, p = 0.035

rs2070045 (SNP19) G/T 144/186/64 (36.5/47.2/16.2) 54/77/25 (34.6/49.4/16.0) 302/392/99 (38.1/49.4/12.5) OR = 1.04, p = 0.794 OR = 0.89, p = 0.204 OR = 0.91, p = 0.307

Adj OR = 1.02, p = 0.909 Adj OR = 0.87, p = 0.149 Adj OR = 0.90, p = 0.256

rs1699102 (SNP22) C/T 330/61/1 (84.2/15.6/0.3) 129/28/0 (82.2/17.8/0.0) 666/123/7 (83.7/15.5/0.9) OR = 1.13, p = 0.620 OR = 1.08, p = 0.637 OR = 1.09, p = 0.596

Adj OR = 1.13, p = 0.633 Adj OR = 1.06, p = 0.711 Adj OR = 1.07, p = 0.687

rs3824968 (SNP23) A/T 155/184/56 (39.2/46.6/14.2) 61/76/19 (39.1/48.7/12.2) 313/390/88 (39.6/49.3/11.1) OR = 0.96, p = 0.772 OR = 0.93, p = 0.409 OR = 0.93, p = 0.431

Adj OR = 0.95, p = 0.710 Adj OR = 0.90, p = 0.300 Adj OR = 0.92, p = 0.375

rs3737529 C/T 239/142/20 (59.6/35.4/5.0) 103/50/4 (65.6/31.8/2.5) 508/257/33 (63.7/32.2/4.1) OR = 0.77, p = 0.120 OR = 0.86, p = 0.164 OR = 0.85, p = 0.107

Adj OR = 0.78, p = 0.140 Adj OR = 0.82, p = 0.073 Adj OR = 0.82, p = 0.069

rs2282649 (SNP24) T/C 148/188/56 (37.8/48.0/14.3) 59/79/18 (37.8/50.6/11.5) 305/391/93 (38.7/49.6/11.8) OR = 0.94, p = 0.659 OR = 0.93, p = 0.409 OR = 0.93, p = 0.408

Adj OR = 0.92, p = 0.585 Adj OR = 0.90, p = 0.297 Adj OR = 0.92, p = 0.356

rs1010159 (SNP25) C/T 155/181/55 (39.6/46.3/14.1) 62/77/18 (39.5/49.0/11.5) 315/386/89 (39.9/48.9/11.3) OR = 0.95, p = 0.702 OR = 0.93, p = 0.462 OR = 0.94, p = 0.463

Adj OR = 0.93, p = 0.598 Adj OR = 0.91, p = 0.322 Adj OR = 0.92, p = 0.380

rs1784933 (SNP26) A/G 178/175/47 (44.5/43.8/11.8) 86/61/10 (54.8/38.9/6.4) 408/326/63 (51.2/40.9/7.9) OR = 0.69, p = 0.012 OR = 0.78, p = 0.008 OR = 0.77, p = 0.003

Adj OR = 0.69, p = 0.013 Adj OR = 0.75, p = 0.004 Adj OR = 0.74, p = 0.002

Abbreviations: AD Alzheimer’s disease, MCI Mild cognitive impairment, SNP Single-nucleotide polymorphism, SORL1 Sortilin-related receptor 1 gene, M Major allele, m Minor allele, OR Odds ratio
Model of inheritance was an additive model. Adjusted ORs and adjusted p values were obtained from logistic regression with adjustment of age, sex, and APOE ε4 allele
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association between SORL1 rs1784933 and AD spectrum
disorder (OR = 0.74, p = 0.002).
In addition to rs1784933, the nonsynonymous SNP

rs2298813 was also significantly associated with MCI
(Table 2). The minor allele A of rs2298813 carried a re-
duced risk of MCI (OR = 0.49, p = 0.003) and remained
significant after adjustment for age, sex, and APOE ε4
allele. The A allele of rs2298813 showed a similar trend,
with a protective effect on LOAD, but this result was in-
significant. When patients with AD and patients with
MCI were combined, the minor allele A of rs2298813
was significantly associated with a reduced risk after ad-
justment for other covariates (OR = 0.76, p = 0.035).

Haplotype analysis
LD mapping of the eight genotyped SORL1 SNPs
showed that there were two LD blocks in the Han Chin-
ese population in Taiwan (Fig. 1, left panel). One LD
block was composed of rs2070045 and rs1699102 (SNPs
19–22), and the other one included four SNPs

(rs3824968, rs3737529, rs2282649, and rs1010159; SNPs
23–rs3737529–25). Haplotype analysis was performed in
the two LD blocks separately, but it failed to yield any
significant result (Fig. 1). When comparing the LD maps
between the Han Chinese population in the present
study and the CEU population from the 1000 Genomes
Project, the LD conformation and the haplotype fre-
quency substantially differed between the two ethnic
groups. For example, “ACTC” was the most common
haplotype of the second LD block (SNPs 23–rs3737529–
SNP25) in the Han Chinese population, but “TCCT” was
the most common one in the CEU population (Fig. 1).

Associations of SORL1 SNPs and plasma Aβ
concentrations
We further explored the relationship between rs1784933
genotypes and plasma Aβ concentrations (Table 3). The
average plasma concentrations of Aβ40 and Aβ42, as
well as the ratios of plasma Aβ42/Aβ40 concentration,
were similar among control subjects, patients with MCI,

Fig. 1 Linkage disequilibrium (LD) map and haplotype analysis. * p value for comparing haplotype distribution between patients with AD +
patients with MCI and control subjects using Haploview software version 5.0. The frequency (Freq) of each haplotype and the conformation of LD
blocks differed substantially between Han Chinese in Taiwan and a white population (CEU; Utah residents with Northern and Western European
ancestry) from the 1000 Genomes Project. SNP Single-nucleotide polymorphism
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and patients with LOAD. Overall, the plasma concentra-
tions of Aβ40 and Aβ42 were significantly lower in sub-
jects carrying the rs1784933 G allele than among those
without that G allele. After adjusting for age, sex, and
APOE ε4 allele, the association of the G allele of SORL1
rs1784933 with a lower plasma concentration of Aβ42
remained nominally significant (p = 0.046); however, the
results were only borderline significant for a lower
plasma concentration of Aβ40 (p = 0.071). In addition,
the ratio of plasma Aβ42/Aβ40 concentration did not
differ between rs1784933 G allele carriers and noncar-
riers. Similar analysis done for patients with LOAD
alone revealed lower plasma Aβ42 concentrations in G
allele carriers than in noncarriers. However, the plasma
concentration of Aβ40 and the ratio of Aβ42/Aβ40 con-
centration in patients with LOAD did not show any dif-
ference between G allele carriers and noncarriers.

Associations of SORL1 SNPs and cognitive tests
To further test the influence of rs1784933 genotypes on
cognitive function, the average MMSE scores among the
three genotypes were compared in patients with LOAD,
patients with MCI, and control subjects separately.
There was no significant difference in the MMSE scores
among the AA, AG, and GG genotypes of rs1784933
(Table 4). For patients with MCI and patients with
LOAD, there was no association between rs1784933

genotypes and any of the six cognitive test results
(Table 4). Neither the MMSE scores nor any of the six
cognitive domain tests showed differences across
rs2298813 genotypes (data not shown).

Discussion
The present study confirmed SORL1 as a susceptible
gene for LOAD and MCI in the Han Chinese population
in Taiwan. The SNP rs1784933 located in the 3′ region
of the SORL1 genome and the nonsynonymous SNP
rs2298813 were most significantly associated with AD
and MCI. A lower plasma level of Aβ42 was found in in-
dividuals carrying the minor allele G of rs1784933 in
comparison with those without the G allele. A similar
trend of reduced plasma levels of Aβ40 was also ob-
served in the G allele carriers, but this finding was not
significant. Neither MMSE scores nor any test of the six
cognitive domains differed among SORL1 genotypes.
In the Taiwanese population, SNP rs1784933 (SNP26)

is most significantly associated with AD/MCI suscepti-
bility, and its minor allele G exerts a protective effect
against disease. Consistent with our findings, in a study
of persons of Han Chinese descent in mainland China,
researchers found that the G allele of rs1784933, but not
the other two tested SORL1 SNPs was related to a re-
duced risk of AD [16]. Although the associations be-
tween SORL1 polymorphisms and AD have been

Table 3 Associations between SORL1 rs1784933 and plasma amyloid-beta concentration

Multivariate regression model Aβ42 Aβ40 Aβ42/Aβ40 ratio

AD (n = 592) 23.8 ± 15.1 173.1 ± 79.3 0.15 ± 0.25

MCI (n = 119) 23.6 ± 12.5 178.7 ± 54.6 0.14 ± 0.07

Control subjects (n = 170) 23.7 ± 12.6 171.6 ± 64.3 0.15 ± 0.08

AD vs. control subjects p = 0.899 p = 0.807 p = 0.904

MCI vs. control subjects p = 0.969 p = 0.318 p = 0.189

SORL1 rs1784933 in overall participants (n = 873)

G allele carriers (AG + GG genotypes) 22.68 ± 13.82 168.51 ± 65.93 0.14 ± 0.08

G allele noncarriers (AA genotype) 24.82 ± 14.67 178.33 ± 79.81 0.16 ± 0.27

G allele carriers vs. noncarriers

Raw p value p = 0.026 p = 0.048 p = 0.214

Adjusted for age and sex Adj p = 0.029 Adj p = 0.054 Adj p = 0.217

Adjusted for age, sex, and APOE ε4 allele Adj p = 0.046 Adj p = 0.071 Adj p = 0.248

SORL1 rs1784933 in patients with AD (n = 584)

G allele carriers (AG + GG genotypes) 22.62 ± 14.48 168.86 ± 70.79 0.14 ± 0.08

G allele noncarriers (AA genotype) 25.00 ± 15.60 177.14 ± 86.24 0.16 ± 0.33

G allele carriers vs. noncarriers

Raw p value p = 0.056 p = 0.205 p = 0.203

Adjusted for age and sex Adj p = 0.056 Adj p = 0.204 Adj p = 0.203

Adjusted for age, sex, and APOE ε4 allele Adj p = 0.058 Adj p = 0.211 Adj p = 0.206

Abbreviations: AD Alzheimer’s disease, APOE Apolipoprotein E gene, MCI Mild cognitive impairment, SORL1 Sortilin-related receptor 1 gene, Aβ Amyloid-beta, Adj p
p value in the multivariate regression with adjustment of covariates
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replicated in several studies [14, 15], the regions tagged
by most significant SNPs vary across different ethnic
groups. For whites, Caribbean Hispanics, and Israeli
Arabs, SNPs located in the 5′ end of the SORL1 genome
(i.e., SNPs 8–10) are most strongly associated with AD
[12, 14]. However, SNPs near the 3′ region of the SORL1
genome (i.e., SNP19 and SNPs 22–25) are more signifi-
cantly related to AD in the Chinese, Japanese, and Afri-
can American populations [13, 33, 34]. The consistent
findings between our study and other Asian groups
imply a pathogenic role of the 3′ region of SORL1 in
AD, especially for Asian populations. In addition, the
different haplotype frequency and LD conformation be-
tween Han Chinese and CEU populations (Fig. 1) further
explain why the most significant SNPs vary across
populations.
It is worthwhile to note that the nonsynonymous SNP

rs2298813 (A528T), causing an amino acid substitution
from alanine to threonine at the 528th residue of SORL1
protein, was significantly associated with MCI in our
population. A similar but insignificant effect of
rs2298813 on LOAD was also observed. Interestingly,
rs2298813 was rarely found significant in previous
GWAS of LOAD, but this coding variant segregates with
disease status in familial AD [30]. The results of an in
vitro study suggest that this coding variant has a direct
and deleterious impact on AD pathogenesis because
HEK293 cells expressing A528T mutant SORL1 could
not physiologically interact with APP, which subse-
quently increased the secretion of Aβ42, soluble APPα,
and APPβ [30].

The SORL1 protein regulates APP trafficking and pro-
cessing, which subsequently influences the formation of
Aβ [9]. Researchers in several studies explored the rela-
tionship between SORL1 polymorphisms and CSF levels
of Aβ42 and Aβ40, but their work led conflicting results
[17–19, 35, 36]. Concordant with our findings that sub-
jects carrying the minor allele of rs1784933 have reduced
plasma levels of Aβ42, investigators in several studies
found that SNPs located at the 3′ region of SORL1 were
associated with lower concentrations of Aβ42 in CSF
[17–19]. A trend for reduced CSF concentrations of
Aβ40 was also observed in these studies, but without
statistical significance. Because SORL1 regulates the APP
processing pathway upstream from the catalyzation of β-
and γ-secretases, insufficient SORL1 activity would not
change the ratio of Aβ42/Aβ40 concentrations.
To our knowledge, the present study is the first inves-

tigation of the influence of SORL1 polymorphisms on
plasma concentrations of Aβ42 and Aβ40. Although
plasma Aβ concentrations might be confounded by age,
disease duration, and other factors [37, 38], they are
more easily accessible than CSF Aβ levels as a surrogate
marker of AD pathology. Notably, the association be-
tween plasma Aβ levels and SORL1 rs1784933 derived
mainly from patients with AD rather than from patients
with MCI (Table 3). There might be two reasons for
such a discrepancy. First, only 30–60% of patients with
MCI have a neurodegenerative and progressive course,
with the remainder having nondegenerative (or revers-
ible) causes [39, 40]. The MCI group consists of hetero-
geneous entities, including AD and other pathogenesis,

Table 4 Associations between SORL1 rs1784933 and cognitive tests

Subjects Cognitive tests SORL1 rs1784933 p Value
(ANOVA)AA AG GG

Control subjects MMSE score 28.0 ± 2.1 28.1 ± 1.9 27.6 ± 2.1 0.490

MCI MMSE score 25.9 ± 2.9 26.0 ± 2.8 26.7 ± 2.4 0.468

12-item word recall test 4.5 ± 3.0 4.5 ± 2.7 5.0 ± 2.6 0.877

Forward digit span 10.0 ± 2.8 10.2 ± 2.1 9.1 ± 2.9 0.507

Backward digit span 5.5 ± 2.5 6.1 ± 2.1 6.3 ± 3.2 0.271

Verbal fluency test 10.1 ± 2.8 10.5 ± 3.4 9.5 ± 2.3 0.576

Boston Naming Test 13.5 ± 1.2 13.8 ± 1.3 13.4 ± 1.4 0.290

Trail Making Test A, seconds 99.7 ± 67.2 84.1 ± 38.9 74.4 ± 39.0 0.177

AD MMSE score 18.1 ± 6.0 18.5 ± 5.7 18.5 ± 6.0 0.648

12-item word recall test 1.3 ± 2.1 1.5 ± 2.2 1.5 ± 2.5 0.494

Forward digit span 8.3 ± 3.1 8.6 ± 3.1 8.1 ± 2.2 0.224

Backward digit span 3.8 ± 2.1 3.9 ± 2.2 3.5 ± 1.8 0.461

Verbal fluency test 6.4 ± 3.3 6.5 ± 3.1 6.9 ± 2.8 0.537

Boston Naming Test 11.2 ± 3.1 11.5 ± 2.9 11.9 ± 2.3 0.229

Trail Making Test A, seconds 186.8 ± 160.5 175.6 ± 130.4 182.9 ± 115.2 0.630

Abbreviations: AD Alzheimer’s disease, MCI Mild cognitive impairment, SORL1 Sortilin-related receptor 1 gene, MMSE Mini Mental State Examination, ANOVA
One-way analysis of variance
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which might account for the insignificant correlation be-
tween SORL1 polymorphisms and plasma Aβ concentra-
tions. Second, the smaller sample size of the patients
with MCI with available plasma Aβ levels may have lim-
ited our power to detect a significant correlation. We
did not measure the plasma concentrations of SORL1
protein, because it is undetectable in the circulation, ac-
cording to a previous study [41].
The relationship between SORL1 variants and cogni-

tive function has been investigated. Reynolds et al. found
that markers at the 5′ region of SORL1 tended to be as-
sociated with verbal function decline and that SNPs near
the 3′ end were more related with episodic memory im-
pairment [42]. However, in a large cohort with a sample
size up to 9624 participants, researchers did not find any
correlation between SORL1 variants and different do-
mains of cognitive function [43]. The present study also
does not demonstrate any association between SORL1
SNPs and the six cognitive domains.

Conclusions
SORL1 is genetically related to MCI and LOAD in the
Han Chinese population in Taiwan. A reduced plasma
concentration of Aβ42 was found in individuals carrying
the minor allele of the most significant SNP, rs1784933,
implying a biological role of SORL1 genetic markers on
the Aβ cascade.
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